DOI QR코드

DOI QR Code

Photo-induced Isomerization and Polymerization of (Z,Z)-Muconate Anion in the Gallery Space of [LiAl2(OH)6]+ Layers

  • Rhee, Seog-Woo (Department of Chemistry-BK21 and the Institute of Basic Science, Sungkyunkwan University) ;
  • Jung, Duk-Young (Department of Chemistry-BK21 and the Institute of Basic Science, Sungkyunkwan University)
  • Published : 2002.01.20

Abstract

Photoreaction of guest organic anions in layered organic-inorganic hybrid materials was investigated. The layered hybrids were synthesized by an anion-exchange reaction of $[LiAl_2(OH)_6]Cl{\cdot}yH_2O$ layered double hydroxide with aqueous (Z,Z)- and (E,E)-muconates under inert atmospheric condition, to give new organicinorganic hybrids of $[LiAl_2(OH)_6]_2[(Z,Z)-C_6H_4O_4]{\cdot}zH_2O$ and $[LiAl_2(OH)_6]_2[(E,E)-C_6H_4O_4]{\cdot}H_2O$, respectively. The basal spacings calculated by XRPD of intercalates indicate that muconate anions have almost vertical arrangements against the host $[LiAl_2(OH)_6]^+$ lattices in the interlayer of organic-inorganic hybrid materials. When UV light was irradiated on the suspension of $[LiAl_2(OH)_6]_2[(Z,Z)-C_6H_4O_4]{\cdot}zH_2O$, the (Z,Z)-muconate anions of the gallery space of hybrids were polymerized in the aqueous media while it was isomerized into more stable (E,E)-muconate in the methanollic suspension in the presence of catalytic amount of molecular iodine. All the products were characterized using elemental analysis, TGA, XRPD, FT-IR, $^1H$ NMR and $^{13}C$ CP-MAS NMR.

Keywords

References

  1. Whittingham, M. S., Jacobson, A. J., Eds.; Academic Press: New York, U.S.A., 1982.
  2. Schollhorn, R. In Inclusion Compounds; Atwood, J. L.; Davies, J. E. D.; MacNicol, D. D., Eds.; Academic Press: London, UK, 1984; Vol. 1, p 249.
  3. Jacobson, A. J. In Solid State Chemistry Compounds; Cheetham, A. K.; Day, P., Eds.; Clarendon Press: Oxford, UK, 1992; p 183.
  4. O'Hare, D. In Inorganic Materials, 2nd Ed.; Bruce, D. W.; O'Hare, D., Eds.; John Wiley and Sons: New York, U. S. A., 1996; p 171.
  5. Laget, V.; Hornick, C.; Rabu, P.; Drillon, M.; Ziessel, R. Coord. Chem. Rev. 1998, 178-180, 1533.
  6. Vaccari, A. Appl. Clay Sci. 1999, 14, 161. https://doi.org/10.1016/S0169-1317(98)00058-1
  7. Alexandre, M.; Dubois, P. Mater. Sci. Eng., R 2000, 28, 1. https://doi.org/10.1016/S0927-796X(00)00012-7
  8. Allmann, R. Acta Crystallogr. 1968, B24, 972.
  9. Brindley, G. W.; Kikkawa, S. Am. Miner. 1979, 64, 836.
  10. Ogawa, M.; Kuroda, K. Chem. Rev. 1995, 95, 399. https://doi.org/10.1021/cr00034a005
  11. Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173. https://doi.org/10.1016/0920-5861(91)80068-K
  12. Rives, V.; Ulibarri, M. A. Coord. Chem. Rev. 1999, 181, 61. https://doi.org/10.1016/S0010-8545(98)00216-1
  13. Choy, J.- H.; Kwak, S.-Y.; Park, J.-S.; Jeong, Y.-J.; Portier, J. J. Am. Chem. Soc. 1999, 121, 1399. https://doi.org/10.1021/ja981823f
  14. Miyata, S. Clays Clay Miner. 1983, 31, 305. https://doi.org/10.1346/CCMN.1983.0310409
  15. Reichle, W. T. J. Catal. 1985, 94, 547. https://doi.org/10.1016/0021-9517(85)90219-2
  16. Kwon, T.; Tsigdinos, G. A.; Pinnavaia, T. J. J. Am. Chem. Soc. 1988, 110, 3653. https://doi.org/10.1021/ja00219a048
  17. Vaccari, A. Appl. Clay. Sci. 1995, 10. 1. https://doi.org/10.1016/0169-1317(95)90001-2
  18. Moreyon, J. E.; de Roy, A.; Forano, C.; Besse, J. P. Appl. Clay Sci. 1995, 10, 163. https://doi.org/10.1016/0169-1317(95)00012-S
  19. Kopka, H.; Beneke, K.; Lagaly, G. J. Colloid Interface Sci. 1988, 123, 427. https://doi.org/10.1016/0021-9797(88)90263-9
  20. Kooli, F.; Chisem, I. C.; Vucelic, M.; Jones, W. Chem. Mater. 1996, 8, 1969. https://doi.org/10.1021/cm960070y
  21. Whilton, N. T.; Vickers, P. J.; Mann, S. J. Mater. Chem. 1997, 7, 1623. https://doi.org/10.1039/a701237c
  22. Carlino, S. Solid State Ionics 1997, 98, 73. https://doi.org/10.1016/S0167-2738(96)00619-4
  23. Newman, S. P.; Jones, W. New J. Chem. 1998, 22, 105. https://doi.org/10.1039/a708319j
  24. Rey, S.; Merida-Robles, J.; Han, K. S.; Guerlou-Demourgues, L.; Delmas, C.; Duguet, E. Polym. Int. 1999, 48, 277. https://doi.org/10.1002/(SICI)1097-0126(199904)48:4<277::AID-PI120>3.0.CO;2-2
  25. Awaga, K.; Coronado, E.; Drillon, M. MRS Bull. 2000, 25, 52.
  26. Prevot, V.; Forano, C.; Besse, J. P. Appl. Clay Sci. 2001, 18, 3. https://doi.org/10.1016/S0169-1317(00)00025-9
  27. Elvidge, J. A.; Linstead, R. P.; Sims, P.; Orkin, B. A. J. Chem. Soc. 1950, 2235
  28. Hertler, W. R.; RajanBabu, T. V.; Ovenall, D. W.; Reddy, G. S.; Sogah, D. Y. J. Am. Chem. Soc. 1988, 110, 5841. https://doi.org/10.1021/ja00225a040
  29. Matsumoto, A.; Matsumura, T.; Aoki, S. Macromolecules 1996, 29, 423. https://doi.org/10.1021/ma950996b
  30. Matsumoto, A.; Odani, T.; Chikada, M.; Sada, K.; Miyata, M. J. Am. Chem. Soc. 1999, 121, 11122. https://doi.org/10.1021/ja992558g
  31. Matsumoto, A.; Odani, T.; Sada, K.; Miyata, M.; Tashiro, K. Nature 2000, 405, 328. https://doi.org/10.1038/35012550
  32. Odani, T.; Matsumoto, A. Macromol. Rapid Commun. 2000, 21, 40. https://doi.org/10.1002/(SICI)1521-3927(20000101)21:1<40::AID-MARC40>3.0.CO;2-L
  33. Fogg, A. M.; Dunn, J. S.; Shyu, S. G.; Cary, D. R.; O'Hare, D. Chem. Mater. 1998, 10, 351. https://doi.org/10.1021/cm9705202
  34. Besserguenev, A. V.; Fogg, A. M.; Francis, R. J.; Price, S. J.; O'Hare, D.; Isupov, V. P.; Tolochko, B. P. Chem. Mater. 1997, 9, 241. https://doi.org/10.1021/cm960316z
  35. Fogg, A. M.; Green, V. M.; Harvey, H. G.; O'Hare, D. Adv. Mater. 1999, 11, 1466. https://doi.org/10.1002/(SICI)1521-4095(199912)11:17<1466::AID-ADMA1466>3.0.CO;2-1
  36. Millange, F.; Walton, R. I.; Lei, L.; O'Hare, D. Chem. Mater. 2000, 12, 1990. https://doi.org/10.1021/cm0002057
  37. Dutta, P. K.; Puri, M. J. Phys. Chem. 1989, 93, 376 https://doi.org/10.1021/j100338a072
  38. Prevot, V.; Forano, C.; Besse, J. P. Inorg. Chem. 1998, 37, 4293 https://doi.org/10.1021/ic9801239
  39. CS Chem3D Pro version 5.0 (Cambridge Soft)
  40. Matsumoto, A.; Nagahama, S.; Odani, T. J. Am. Chem. Soc. 2000, 122, 9109 https://doi.org/10.1021/ja001093n

Cited by

  1. Step-wise Anion-Exchange in Layered Double Hydroxide Using Solvothermal Treatment vol.26, pp.2, 2002, https://doi.org/10.5012/bkcs.2005.26.2.248
  2. Delamination of layered double hydroxides in water vol.15, pp.6, 2005, https://doi.org/10.1039/b416913a
  3. Fine tuning between organic and inorganic host structure: new trends in layered double hydroxide hybrid assemblies vol.15, pp.35, 2002, https://doi.org/10.1039/b505014f