• 제목/요약/키워드: inequality control constraints

검색결과 82건 처리시간 0.023초

Evaluation of Generator Reactive Power Pricing Through Optimal Voltage Control under Deregulation

  • Jung Seung-Wan;Song Sung-Hwan;Yoon Yong Tae;Moon Seung-Il
    • KIEE International Transactions on Power Engineering
    • /
    • 제5A권3호
    • /
    • pp.228-234
    • /
    • 2005
  • This paper presents the evaluation of reactive power pricing through the control of generator voltages under the assumption that the reactive power market has been transformed into the real power market. By applying the concept of economic dispatch, which minimizes the total cost of real power generation to reactive power generation, the algorithm for implementing reactive power pricing is proposed to determine the optimum voltage profiles of generators. It consists of reactive power voltage equation, the objective function that minimizes the total cost of reactive power generation, and linear analysis of inequality constraints in relation to the load voltages. From this algorithm, the total cost of the reactive power generation can be yielded to the minimum value within network constraints as the range of load voltages. This may provide the fair and reasonable price information for reactive power generation in the deregulated electricity market. The proposed algorithm has been tested on the IEEE 14-bus system using MATLAB.

실수코딩 유전알고리즘에 관한 연구 (A Study on a Real-Coded Genetic Algorithm)

  • 진강규;주상래
    • 제어로봇시스템학회논문지
    • /
    • 제6권4호
    • /
    • pp.268-275
    • /
    • 2000
  • The increasing technological demands of today call for complex systems, which in turn involve a series of optimization problems with some equality or inequality constraints. In this paper, we presents a real-coded genetic algorithm(RCGA) as an optimization tool which is implemented by three genetic operators based on real coding representation. Through a lot of simulation works, the optimum settings of its control parameters are obtained on the basis of global off-line robustness for use in off-line applications. Two optimization problems are Presented to illustrate the usefulness of the RCGA. In case of a constrained problem, a penalty strategy is incorporated to transform the constrained problem into an unconstrained problem by penalizing infeasible solutions.

  • PDF

계통사고시 장해 경감을 위한 긴급제어에 관한 연구 (A Study on the Emergency Control Algorithm for Viability Crisis of Power System)

  • 송길영;이희영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1987년도 정기총회 및 창립40주년기념 학술대회 학회본부
    • /
    • pp.129-132
    • /
    • 1987
  • This paper presents an emergency control algorithms for viability crisis following abnormal condition as well as a sudden major supply outage and line outage. The algorithm considers the effect of voltage-reactive power control for determining the load shedding quantities and generation reallocation. The problem is decomposed into a P-problem and a Q-problem. The former minimizes system frequency deviation from nominal value and the latter minimizes voltages violation of load buses. The optimization problem is solved by a reduced gradient technique which can handle a great number of inequality constraints very efficiently. It has been found that the use of the proposed algorithm for 6-Bus system restore the abnormal system during the viability crisis to the normal state.

  • PDF

압전/빔 시스템에 대한 강건제어기 개발 (Development of a Robust Controller for Piezo/beam Systems)

  • 홍성일;박현철;박철휴
    • 한국소음진동공학회논문집
    • /
    • 제14권7호
    • /
    • pp.612-618
    • /
    • 2004
  • This paper presents a robust vibration control methodology for smart structural systems. The governing equation and associated boundary conditions of the smart structural system are derived by using Hamilton's principle. The assumed mode method is used to discretize the governing equation into a set of ordinary differential equation. A robust controller is designed using a linear matrix inequality (LMI) approach for the multiobjective synthesis. The design objectives are to achieve a mix of H$_{\infty}$ performance and H$_2$ performance satisfying constraints on the closed-loop pole locations in the presence of model uncertainties. Numerical examples are presented to demonstrate the effectiveness of LMI approach in damping out the multiple vibration modes of the piezo/beam system.

정합조건을 만족시키지 않는 불확실한 시스템을 위한 선형 슬라이딩 평면의 LMI 매개변수화 (LMI Parameterization of Lineny Sliding Surfaces for Mismatched Uncertain Systems)

  • 이재관;최한호
    • 제어로봇시스템학회논문지
    • /
    • 제11권11호
    • /
    • pp.907-912
    • /
    • 2005
  • In this paper, we consider the problem of designing sliding surfaces fur a class of dynamic systems with mismatched uncertainties in the state space model. In terms of LMIs, we give necessary and sufficient conditions fir the existence of a linear sliding surface such that the reduced order sliding mode dynamics is asymptotically stable and completely independent of uncertainties. We parameterize all such linear sliding surfaces by using the solution to the given LMI conditions. And, we consider the problem of designing linear sliding surfaces guaranteeing pole placement constraints or $H_2/H_infty$ performances. Finally, we give a design example in order to show the effectiveness of our method.

Repetitive Periodic Motion Planning and Directional Drag Optimization of Underwater Articulated Robotic Arms

  • Jun Bong-Huan;Lee Jihong;Lee Pan-Mook
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권1호
    • /
    • pp.42-52
    • /
    • 2006
  • In order to utilize hydrodynamic drag force on articulated robots moving in an underwater environment, an optimum motion planning procedure is proposed. The drag force acting on cylindrical underwater arms is modeled and a directional drag measure is defined as a quantitative measure of reaction force in a specific direction in a workspace. A repetitive trajectory planning method is formulated from the general point-to-point trajectory planning method. In order to globally optimize the parameters of repetitive trajectories under inequality constraints, a 2-level optimization scheme is proposed, which adopts the genetic algorithm (GA) as the 1st level optimization and sequential quadratic programming (SQP) as the 2nd level optimization. To verify the validity of the proposed method, optimization examples of periodic motion planning with the simple two-link planner robot are also presented in this paper.

Local motion planner for nonholonomic mobile robots

  • Hong, Sun-Gi;Choi, Changkyu;Shin, Jin-Ho;Park, Kang-Bark;Lee, Ju-Jang
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1995년도 Proceedings of the Korea Automation Control Conference, 10th (KACC); Seoul, Korea; 23-25 Oct. 1995
    • /
    • pp.530-533
    • /
    • 1995
  • This paper deals with the problem of motion planning for a unicycle-like robot. We present a simple local planner for unicycle model, based on an approximation of the desired configuration generated by local holonomic planner that ignores motion constraints. To guarantee a collision avoidance, we propose an inequality constraint, based on the motion analysis with the constant control input and time interval. Consequently, we formulate our problem as the constrained optimization problem and a feedback scheme based on local sensor information is established by simply solving this problem. Through simulations, we confirm the validity and effectiveness of our algorithm.

  • PDF

계통사고시 장해경감을 위한 긴급제어 알고리즘에 관한 연구 (A Study on the Emergency Control Algorithm for Viability Crisis of Power System)

  • 송길영;이희영
    • 대한전기학회논문지
    • /
    • 제37권9호
    • /
    • pp.591-599
    • /
    • 1988
  • After the short-term dynamics due to the major disturbance are over, the power system may lead to viability crisis state wherein there is possibility of cascading damage. This paper presents an emergency control algorithm to alleviate the obstacles of system frequency or bus voltage during the viability crisis state. The algorithm considers the effects of controlling reactive power sources for load shedding and generation reallocation in order to alleviate the obstacles. The problem is decomposed into a subproblem I and a subproblem II. The former minimizes system frequency deviation from nominal value and the latter voltage violation of load buses. The optimization problem is solved by a reduced gradient technique which can handle a great number of inequality constraints more easily. It has been verified that the use of the proposed algorithm for IEEE 14 bus system alleviates the obstacles efficiently during the viability crisis.

  • PDF

디지털 제어기의 부분적 초기값 보상을 통한 천이 응답 특성 향상 (Improvement of the Transient Response by Partially Compensating Initial Values of Digital Controllers)

  • 도태용;류정래
    • 제어로봇시스템학회논문지
    • /
    • 제19권4호
    • /
    • pp.285-289
    • /
    • 2013
  • In switching from the track-seeking or track-jumping control mode to track-following control mode in hard disk drives or optical disk drives, initial values of the feedback controller are tuned to improve the transient response. In general, all the initial values of the controller have been compensated for this purpose. In this paper, by partially compensating initial values of digital controllers, we achieve a good performance of the transient response. In the proposed method for IVC (Intial Value Compensation), LMIs (Linear Matrix Inequalities) are used, which includes conditions for improving the performance of the transient response such as reducing a tracking error and control efforts. We obtain optimal initial values of the controller by solving an optimization problem with constraints represented by only one LMI. Although initial values of the controller are partially compensated, we can show that not only a sufficient performance of the transient response is obtained but also control efforts are diminished. The feasibility of the method is verified by simulation studies.

불가사리 채집용 4절 링크 매니퓰레이터의 최적 설계 (Optimal Design of a Four-bar Linkage Manipulator for Starfish-Capture Robot Platform)

  • 김지훈;진상록;김종원;서태원;김종원
    • 한국정밀공학회지
    • /
    • 제30권9호
    • /
    • pp.961-968
    • /
    • 2013
  • In this paper, we propose an optimal design for starfish capturing manipulator module with four-bar linkage mechanism. A tool link with compliance is attached on the four-bar linkage, and the tool repeats detaching starfish from the ground and putting it into the storage box. Since the tool is not rigid and the manipulator is operating underwater, the trajectory of the tool tip is determined by its dynamics as well as kinematics. We analyzed the trajectory of the manipulator tool tip by quasi-static analysis considering both kinematics and dynamics. In optimization, the lengths of each link and the tool stiffness are considered as control variables. To maximize the capturing ability, capturing stroke of the four-bar manipulator trajectory is maximized. Reaction force and reaction moment, and other kinematic constraints were considered as inequality constraints.