• Title/Summary/Keyword: industrial robustness

Search Result 254, Processing Time 0.028 seconds

Performance and Robustness of Control Charting Methods for Autocorrelated Data

  • Chin, Chang-Ho;Apley, Daniel W.
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.34 no.2
    • /
    • pp.122-139
    • /
    • 2008
  • With the proliferation of in-process measurement technology, autocorrelated data are increasingly common in industrial SPC applications. A number of high performance control charting techniques that take into account the specific characteristics of the autocorrelation through time series modeling have been proposed over the past decade. We present a survey of such methods and analyze and compare their performances for a range of typical autocorrelated process models. One practical concern with these methods is that their performances are often strongly affected by errors in the time series models used to represent the autocorrelation. We also provide some analytical results comparing the robustness of the various methods with respect to time series modeling errors.

Robustness Analysis of Closed-Loop Poles (페루프 극점의 견실성 해석)

  • Lee, Jung-Moon;Nam, Boo-Hee
    • Journal of Industrial Technology
    • /
    • v.11
    • /
    • pp.107-114
    • /
    • 1991
  • This paper deals with the robustness of closed-loop poles of a linear time-invariant system with uncertain parameters. A new method is presented to calculate the perturbation of a pole-located region due to parameter uncertainties. A method to calculate allowable bounds on parameter uncertainties is also presented to retain closed-loop poles in a specified region. Based on Lyapunov equations and norm operations, they provide useful measures on the robustness of closed-loop poles. An example is given to illustrate proposed methods.

  • PDF

Receding Horizon Control (이동구간 제어기법)

  • 권욱현;안춘기
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.3
    • /
    • pp.177-185
    • /
    • 2003
  • Current issues of receding horizon control scheme are reviewed. The basic idea of receding horizon control is presented first. For unconstrained and constrained systems, the results of closed-loop stability in receding horizon control are surveyed. We investigate the two categories of robustness of receding horizon control : stability robustness and performance robustness. The existing optimization algorithm to solve receding horizon control problem is briefly mentioned. It is shown that receding horizon control has been extended to nonlinear systems without losing good properties such as stability and robustness. Many industrial applications are reported along with extensive references related to receding horizon control.

A study on Communication Robustness Testing for Industrial Control Devices (산업용 제어기기의 통신 견고성 시험 방안 연구)

  • Park, Kyungmi;Shin, Donghoon;Kim, WooNyon;Kim, SinKyu
    • Journal of the Korea Institute of Information Security & Cryptology
    • /
    • v.29 no.5
    • /
    • pp.1099-1116
    • /
    • 2019
  • Industrial control systems(ICS) are widely used in various industrial area and critical infrastructure. To mitigate security threats on ICS, the security assurance test for industrial control devices has been introduced and operating. The test includes testing of the security function of the device itself and testing of communication robustness. In this paper, we describe the security requirements of EDSA, Achilles, and Korea's TTA standard(security requirements for ICS). And also, we analyzed the characteristics of communication robustness test(CRT) of each certification. CRT verifies the device's operation of essential function while transmitting fuzzing and stress packets. Existing test methods are mostly focused on the embedded devices and are difficult to apply to various devices. We propose a method to test communication robustness which reflect the characteristics of control H/W, control S/W, field devices and network devices in ICS. In the future, we will apply the proposed communication robustness test to actual products and present solutions for arising issues.

A Study on Robustness Analysis Model for Calculating Line Capacity in Railroad System (철도선로용량 계산을 위한 강인성 분석모형에 관한 연구)

  • Lee, Chang-Ho;Kim, Bong-Sun;Kim, Hak-Sik;Lee, Byung-Kwon;Kim, Dong-Hee;Hong, Sun-Hm
    • IE interfaces
    • /
    • v.16 no.spc
    • /
    • pp.111-115
    • /
    • 2003
  • Railroad system is consisted of resources of rail track, signal system, and vehicles. Railway operation must use these limited resources and maximize resource utilization. Line capacity(number of trains throughput/day) is determined by such as parameters, line utilization rate($\alpha$), dummy rate for the break-through hour($\beta$), and dummy rate for the number of rail track intervals($\delta$). Line capacity simulation(LCS) determined the line capacity through simulation given $\alpha$, $\beta$, and $\delta$. This paper deals with the development of parameter evaluation simulation(PES). PES presents the decision maker with the relationship of line capacity and measurement of robustness for various scenarios in different parameters and then the decision maker can determine the appropriate parameters.

Robustness Improvement and Assessment of EARSM k-ω Model for Complex Turbulent Flows

  • Zhang, Qiang;Li, Dian;Xia, ZhenFeng;Yang, Yong
    • International Journal of Aerospace System Engineering
    • /
    • v.2 no.2
    • /
    • pp.67-72
    • /
    • 2015
  • The main concern of this study is to integrate the EARSM into an industrial RANS solver in conjunction with the $k-{\omega}$ model, as proposed by Hellsten (EARSMKO2005). In order to improve the robustness, particular limiters are introduced to turbulent conservative variables, and a suitable full-approximation storage (FAS) multi-grid (MG) strategy is designed to incorporate turbulence model equations. The present limiters and MG strategy improve both robustness and efficiency significantly but without degenerating accuracy. Two discretization approachs for velocity gradient on cell interfaces are implemented and compared with each other. Numerical results of a three-dimensional supersonic square duct flow show that the proper discretization of velocity gradient improves the accuracy essentially. To assess the capability of the resulting EARSM $k-{\omega}$ model to predict complex engineering flow, the case of Common Research Model (CRM, Wing-Body) is performed. All the numerical results demonstrate that the resulting model performs well and is comparable to the standard two-equation models such as SST $k-{\omega}$ model in terms of computational effort, thus it is suitable for industrial applications.

Minimizing Weighted Tardiness using Decomposition Method (분할법을 이용한 가중납기지연 최소화 문제)

  • Byeon, Eui-Seok;Hong, Sung-Wook
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.29 no.1
    • /
    • pp.109-115
    • /
    • 2006
  • Exact solutions for practical-size problems in job shop will be highly inefficient. Scheduling heuristics, therefore, are typically found in the literature. If we consider real-life situations such as machine breakdowns, the existing scheduling methods will be even more limited. Scheduling against due-dates addresses one of the most critical issues in modern manufacturing systems. In this paper, the method for weighted tardiness schedule using a graph theoretic decomposition heuristic is presented. It outstands the efficiency of computation as well as the robustness of the schedule.

The robustness of continuous self tuning controller for retarded system

  • Lee, Bongkuk;Huh, Uk Youl
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10b
    • /
    • pp.1930-1933
    • /
    • 1991
  • In this paper, the robustness of self turning controller on the continuous time-delay system is investigated. The polynomial identification method using continuous time exponentially weighted least square algorithm is used for estimating the time.-delay system parameters. The pole-zero and pole placement method are adopted for the control algorithm. On considering the control weighting factor and reliability filter the effect of unmodeled dynamics of the plant are examined by the simulation.

  • PDF

체계가용도의 붓스트랩 로버스트 추정

  • 홍연웅
    • Proceedings of the Korea Society for Industrial Systems Conference
    • /
    • 1996.10a
    • /
    • pp.205-210
    • /
    • 1996
  • The bootstrap procedure is suggested as a useful method for point and interval estimation of system availability . Its validity and robustness has been shown in special , but representative case, by various sampling experiments. Alternative to the bootstrap suggest themselves (e.g. a variation of the 'F' technique, but remain to be evaluated, as do variations on the bootstrap itself.