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Exact solutions for practical-size problems in job shop will be highly inefficient. Scheduling heuristics, therefore, are

typically found in the literature. If we consider real-life situations such as machine breakdowns, the existing scheduling

methods will be even more limited. Scheduling against due-dates addresses one of the most critical issues in modern man-

ufacturing systems. In this paper, the method for weighted tardiness schedule using a graph theoretic decomposition heu-

ristic is presented. It outstands the 2fficiency of computation as well as the robustness of the schedule.

Keywords : Decomposition, Weighied Tardiness, Robustness

1. Introduction

The Job-shop scheduling problem(JSP) for the weighted
to be NP-hard
sense(Ullman, 1975). Exact solutions for practical-size prob-

tardiness is well known in a strong
lems will be highly inefficient. Scheduling heuristics, there-
fore, are typically found in the literature. If we consider
real-life situations such as machine breakdowns, rush or-
ders, power failure, and other distributions, the existing
scheduling methods will be even more limited. Scheduling
against due-dates addresses one of the most critical issues
in modern manufacturing systems. Tardy shipments can re-
sult in contractual penalties and eventually cause significant
losses to the company.

In this chapter, we present a new method for weighted
tardiness schedule using a graph theoretic decomposition

heuristic. This heuristic decomposes a given JSP into a ser-

ies of sub-problem by solving a variant of the assignment
problem(VAP). The assignment defines, in turn, a partially
solved job-shop schedule that retains a great deal of local
flexibility, and a much reduced complexity. The local flexi-
bility offers additional opportunities for the schedule to
the Thus, a
non-myopic view of the scheduling function is maintained

handle possible disturbances in systems.
throughout the planning, while the attained local flexibility
allows timely responses to the shop disturbances.

Roundy et al.(1991) have also addressed the issue of
scheduling flexibility. They reformulated Pritsker (1968)
Integer Programming formulation and implemented it as a
two-phase approach including in a planning and a dispatch-
ing module. The planning module calculates the price of
using each machine over the planning horizon with the dis-
patching module schedule based the price. Their approach
is designed to handle minor system disturbances. Bean et
al.(1991) developed a matchup scheduling algorithm, which
computed a transient schedule upon the occurrence of a
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system disruption. The schedule eventually matches up with
the pre-schedule in a finite amount of time while assuming
an infinite planning horizon.

Morton et al.(1988), Lawrence and Morton(1993) and
Vepsalainen and Morton(1987) have developed dispatching
heuristics based on look ahead pricing schemes. These heu-
ristics were shown to be quite effective for realistic size
problems. This research has shown that when implemented
in an iterative fashion, the performance of these heuristics
can be much improved. We have used, in turn, a heuristics
modified from Vepsalainen and Morton(1987) to compute
the upper bounds of our problem.

Kong and Kim (2000) studied that Resource-constrained
project scheduling was to allocate limited resources to ac-
tivities to optimize certain objective functions and to de-
termine a start time for each activity in the project such
.that precedence constraints and resource requirements are
satisfied.

Sidney(1975) proposed an optimal decomposition proce-
dure for minimizing weighed flow time in single machine
problems with precedence constraints. The problem is de-
composed into subsets based on the precedence network.
Nonetheless, the number of subsets to be considered is not
polynomially bounded by the problem size. Poits and Van
Wassenhove(1982) have applied Lawler's decomposition the-
orem(1977) to solve a one-machine total tardiness problem.
The author stated, however, that the approach was limited
to the objective and could not be generalized to other
scheduling problems. In most recent researches, Kim (2004)
presented 0-1 IP formulation and reduced the problem as
an assignment sub problem which can be solvable in poly-
nomial time.

2. Problem Statement

Our variant of the assignment problem(VAP) is defined
by reference to the disjunctive graph associated with a job
shop scheduling problems. We adopt the following notation :

N  :a set of operation to be scheduled, including a
dummy source, o, and sink,*

A :a set of conjunctive arcs representing precedence
constraints

E 2a set of disjunctive arcs representing operations

which may compete for the same machine

oL ¥R

En :a set of disjunctive arcs for machine m

ax - the number of operations to be assigned to subset k

QO  :the set of last operations of each job

Cix An estimation cost of assigning operation i to
subset k

Xik - a binary variable equals to 1 operation i is as-
signed to subset k, 0 otherwise

w; © weight of job j

dd; : due date of job j

1 > ready time of operation i
pi  : processing time of operation i
t; > actual starting time of operation i

Given a job shop scheduling problem and its associated
disjunctive graph G(N,A,E)(Adams et al. 1988), we first as-
sign each of the |N | operations into p subsets. This as-
signment problem can be expressed mathematically as fol-

lows :
(VAP) : Minimize Zlg CIKKK woreeeesrmssrsssesssssssmsssssssassns (1)
s.t.
Z xitk = 1 TEE N oo (2)
zl: xik = 1 S R (3)
/
Xl < xik (i,)) € A and I[=1,..p e )
i Z:]l ] p
Xik & {0,1} i1 € N and k=1,...,p .......................... (5)

Constraints (2) and (5) would be familiar with a set par-
titioning problem. The precedence constraints with respect
to the job-shop scheduling problem(JSP) are represented in
(4) by stating that operation j subject to (ij) & A can be
assigned only if its predecessor i has already been assigned
to the current or an earlier subset. We term (4) the partial
ordering constraints. The problem with (2), (3) and (5) is
known as a generalized assignment problem(Ross and
Soland, 1975).

Note that solution of VAP will resolve some disjunctive
arcs in the set E. In general, an arc (i,j) with ij not as-
signed to a same subset will have its direction fixed.

3 . .. .
Suppose E “ is the remaining, unresolved set of dis-
junctive arcs in subset k, on machine m, then E’jﬂ

={(1’_]) = Em | X =
disjunctive arcs on machine m may be expressed as,

X =1}. The resolved set of
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and

Consequently, we could associate a disjunctive graph,
G, =(N,AUo, Um’kz’fn) with each VAP solution .
Denote AUo as A Um'kEf,, asFy. We can then
associate the disjunctive graph Gw(N,A,/,,Ew) with each
solution . Each disjunctive graphG,, defines a job-shop
scheduling subproblem (7, ) as fol.ows :

(Py): Min Y Jw, (t;+p;—dd;)" oo ®)

F€0

s.t. (Balas, 1979)

tj_ ti > D; (i,j) EAi/) .............................................. )
tj__ t, = p, \/ t,— tj > pi(i,j)EE¢ ......................... (10)
t, =0 16 N (1n

(P,) can be viewed as a variation of the original JSP

with some additional precedence constraints.

As a distinct property of the above decomposition, an
assignment decision is followed ty a detail scheduling
decision. The basic idea is to localize the sequencing deci-
sions via a well-informed, higher lzvel, operations assign-
ment decision. For planning and coatrol purpose, this spe-
cific property offers important planning stability, since
much flexibility is retained for the schedule to handle shop

dynamics.

3. Problem Analysis

Each solution of VAP(y) can be associated with a parti-
ally solved job-shop scheduling problem(P,). The lower and
upper bounds on problem P, provide a performance index
for each VAP solution, y. Suppose an operation assignment
rather than a schedule is released at the beginning of a
planning horizon, then the above index provides a pessi-
mistic as well as optimistic estimation of the scheduling
performance.

We have studied several lower bounds. A trivial lower
bound can be computed by first dropping the unresolved

disjunctive arcs in graph Gu(N,AyEy), then compute the
ready time for each operation i by calculating the longest
path from the source o to i. Denote this operation ready
time LBI1(r), thus, we have the following relationship be-
tween each pair of arcs in Ay *

LB1(ri) = maxj(LBI(1}) + pj) V (i,j)) € Ay, (12)

A lower bound in weighted tardiness can be then com-
puted as follows :

LBI(WT) = 25 Wk(LBI(j) + pk - ddk)+. = (13)

LB1 totally disregards the set E,, thus it can be quite
weak. Rather than ignoring Ey, we could improve the low-
er bound by using the processing times information of each
subset. Define D; as the set of operations assigned to an
immediately preceding subset in the same machine of i.
Thus the ready times of operation i is no less than the to-
tal processing time for Dj. That is, in general the earliest
start time(EST) of subset k is no less than the EST of
subset k-1 plus the sum of operation processing times in
subset k-1. The corresponding lower bound on the oper-
ation ready time is as follows :

LB2(I‘i)=maX{minjEDi{LB2(l‘j)}+j€EDipj, LBI1(xi)} e (14)

A new lower bound on weighted tardiness LB2(WT) can
be thus computed by (13) while replacing LB1 with LB2.
In other words,

LB2(WT) = ;0 Wk(LB2(rJ) + pk - ddk)+ .............. (15)

LB2 can be further tightened by considering following.
Denote Ly the last subset of operations on machine m and
Cn the earliest completion of machine m, thus,

Cn = mimetn{LB2(r)} + {

tELm

Once each machine's earliest possible completion time is
computed by Cn, we select the minimum possible weighted
tardiness among the jobs which belong to machine m. A
lower bound of weighted tardiness can be thus defined as
follows :
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LB3(WT) = minjeom {W_] . (Cm-dd))+} .............. an

meM

where O, € O is the set of last operations on machine
m. We then use the maximum of LB2(WT) and LB3(WT)
as the lower bound LB(WT).

As previous stated, associated with each VAP solution, is
a more restricted disjunctive graph Gu(N,AyE,) and a
scheduling problem P,. An upper bound on P, can be
computed by completing the schedule. We use the ATC
dispatching heuristic of Vepsalainen and Morton(1987) to
compute the upper bound of Py,

4. Solution Methodology

As proposed by our formulation, to solve a job shop
scheduling problem we first solve a variant assignment
problem(VAP) which puts operations in distinct subsets, we
then solve a scheduling subproblem(Py) over time by gen-
erating the detailed schedule in a dynamic fashion. Thus,
when solving VAP we assign operations to subsets so as
to guarantee a certain level of scheduling performance.
This can be achieved by using an assignment objective that
reflects directly the scheduling objective.

We first propose a heuristic which uses a linear approx-

imation Z; ckxik of the true assignment objective. We
1

have developed a pricing structure which estimates the as-
signment costs ci based on the cost of assigning operation
i to subset k. The VAP is then solved as a linear integer
program. Each solution of this VAP represents a feasible
assignment of operations to subsets. We iteratively adjust
the linear assignment costs based on the lower or the up-
per bound computed for the corresponding scheduling prob-
lem(Py). In the rest of this paper, we will refer to the
Price

heuristics developed under this scheme as the

Directed Heuristics, or PDH,

4.1 The Price Directed Heuristic{(PDH)

Given the job weight(w;) and due-date(dd;), we prioritize

each operation corresponding to the weighted tardy
objective. Since a due-date is giver to each job, not to op-
erations, we define an operation due-date as its latest fin-
ishing time(LFT) for meeting the job due-date. Similar ap-

proaches can be found in Baker and Kanet (1983). Based

oM . L

on the due-date dd; of job j, an artificial due-date of oper-
ation i(LFT;) can be defined as follows :

LFTi = dd; - ; pk V(LK) EA e (18)

Like most well-known dispatching rules(EDD, MINSLK
etc.), more priority is assigned to job operation which has
a heavier weight, tight due-date, or both. Normalized with
job weight and operation due date(LFT), we define a prior-
ity index for each operation as follows :

(maxw—minw) (1 max LFT— minLFT) (19)

As previously indicated, the linear cost ci in (1) is an
estimation of the true assignment cost, or the corresponding
cost of assigning operation i to subset k. In this section,
we describe a linear, additive pricing structure which com-
pute the price of having operation i assigned subset k
based on its relative importance to the overall scheduling
cost. The description of the pricing structure procedure is
as follows :

Procedure PRICING STRUCTURE :

Step 0. Compute a priority index pi for each operation i€ N.
Sort the operations according to pi in a non-in-
creasing order, and let S be the sorted list of op-
erations without violating the precedence constrains,

ie, if (,j) e A, i precedes j in S.

For i=l,- - - | §
Given p subsets
For k=1, - -, p

Step 1. Assign operation i to subset k, set ax
«—(0x-1), and assign the remaining S-{i}
operations as follows :

. P

Assign the next a; operation in S-{i}

For j=1, - -

to subset j with the following

constraints :

(a) the predecessors of operation I can
be only assigned to subsets j<k

(b) the successors of operation i can be
only assigned to subsets j=>k

end for

Step 2. Resolve disjunctive arcs (i,j)€E as follows :
if i is assigned to set m, j is assigned
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set n, and m <n,
then fix direction i—j.
Step 3. Compute a weighted tardy lower bound for this
graph, and set it as ci.
end for
end for.

A critical component of PDH is an iterative search
scheme. The basic idea is to update at each iteration the
assignment index(p) based on the current VAP solution.
Since the index is a function of job weight, due date and
processing time, the value of these parameters can be ad-
justed such that the VAP solutions may be improved. We
adjust the due-dates and weights for tardy jobs such that
they are scheduled earlier in the iteration that follows. This
method leads to schedules that give higher priority to tardy
jobs in the previous iteration. The step-size of each adjust-
ment is sufficiently small so as to allow fine tuning.

Procedure ITERATIVE SEARCH :

Step 0. Set Itrn =1, and denote NTI be the number of to-
tal iterations. Compute priority index using original
due-date and weight. Go to step 2.

Step 1. Compute priority index using updated due-date and
weight.

Step 2. Solve VAP by PDH, and ccmpute Bounds of Py,

Step 3. If Itrn > NTI, then stop.

Step 4. Update due-dates and weights.

dd = dd '#stepsizex dg 'x g X _wﬁl)

w 'Tl= gy fhstepsize x g L ox (MESLy

wr

where s; is a slack for each job i.
Go to step L.
End.

4.2 The Index Based Heuristic(iBH)

The index-based heuristic assigns operation to subsets
based on a priority index as in (19} This assignment heu-
ristic is implemented in an iterative fashion similar to that
of PDH. This can be done easily by using the iterative
search procedure.
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We have implemented, in addition to the index in (19),
a priority index originally proposed by Vepsalainen and
Morton(1987). This priority index was originally developed
for weighted tardy job shop scheduling problems. We use
this index for operation assignment. The index can be
briefly described as follows :

%  exp(-] ddj—t—m—ng(Wqﬂqu)

where, operation i is in job J and has the set of
successors. p in the denominator is the average processing
time, and k is a look-ahead parameter(we set k=3). Wi is
leadtime estimator where we set Wi=2 - pi. As in the PDH
method, an assignment from this procedure leads to a sol-
ution to VAP, and a corresponding lower and upper

bounds can be computed.

5. Experimental Results

We have implemented the PDH and IBH procedures.
Three sets of test problems, 10x10, 30x10 and 20x15,
were generated from the makespan problems in Applegate
and Cook(1991). Job weights were generated by uniform
random numbers in the range of {1,10]. The above scheme
generates rather challenging tight due-date problems. The
30x10 and 20x15 problems were generated in a similar
fashion except that a non-delay, instead of optimal, sched-
ule were used for due-date assignment.

The computational results for PHD and IBH are reported
in Table 1. As shown in the table, associated with each
VAP solution is a lower and upper bounds to the corre-
sponding scheduling problem(py). The upper bounds(UB)
were generated by ecompleting the schedule using the
Vepsalainen and Morton's heuristic(VMH). As previously
mentioned, if we view the VAP solution as a partial
schedule then the lower and upper bounds provide a per-
formance index of the assignment.

As discussed earlier, both heuristics could iterate on ei-
ther the upper bound(i.e., PDH(UB), IBH(UB)) or lower
bounds(i.e., PDH(LB), IBH(LB)). To illustrate the effective-
ness of the iterative search procedure, we have im-
plemented an iterative version of Vepsalainen and Morton's
heuristic. Observed from columns VMH(0) and VMH(D) the
iterative method appears to be very effective with an aver-
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<Table 1> Comparison of Heuristic Performance of weighted tardiness on test problems.
PDH(LB) PDH(UB) IBH(LB) IBH(UB) VMH(0) VMH(1)
10x10 [LB UB] [LB UB] [LB uB] [LB UB] UB uB
abz3 2886 8844 1792 8893 4077 8541 2334 9922 8532 7863
al6 117 4187 1870 4431 488 1781 519 3265 3688 1878
1a20 2454 6044 1215 6225 1557 4019 1138 4613 5485 4533
mt10 875 7141 845 8260 1263 5172 1103 4510 6413 3486
orb6 447 3646 1171 5377 2052 4312 1760 5585 5572 3240
30x10
1a31 2256 22581 1482 20815 922 7583 5969 7814 6558 4607
1a33 4528 18868 4528 21120 2671 6143 4528 6645 5949 2708
1a34 1743 16471 5590 17407 2144 16951 5376 13714 8780 6058
20x15
abz7 1114 10877 994 12463 1317 6711 1896 6031 6251 3677
abz8 2938 14973 3172 15399 1662 9842 3286 10939 9706 7297
abz9 179 10678 2672 11945 977 6848 2731 8314 8958 6918

PDH(UB) : Price Directed Heuristic with iterative search based on Upper Bound.
PDH(LB) : Price Directed Heuristic with iterative search based on Lower Bound.
IBH(UB) : Index Based Heuristic with iterative search based on Upper Bound.
IBH(LB) : Index Based Heuristic with iterative search based on Lower Bound.

VMH(0) : Morton's ATC-Priority heuristic without iterative search.
VMH(I) : Morton's ATC-Priority heuristic with iterative search.

age improvement of 309.

The results in Table 1 establish a rough comparison be-
tween the two VAP heuristics (PDH and IBH) and the
more traditional scheduling heuristic VMH. Nevertheless,
the results are rather difficult to interpret since the VAP
heuristic generates only a partial schedule. A basic thesis
of this experiment is that this partial schedule provides
global performance while offering local flexibility to handle
shop disturbances. To verify this point we have conducted
a set of Monte Carlo experiments which test robustness of
the partial schedule under a wide range of shop disturbances.
The results are then compared to the traditional static, and
dynamic scheduling methods.

For each partial schedule W generated in Table 1, we
start with its corresponding disjunctive graph G¥ and make
the remaining scheduling decisions over time using a dy-
namic dispatching rule. To establish a fair comparison, we
use Vepsalainen and Morton's ATC heuristic for the above
dynamic dispatching, and we use the same heuristic to
generate pure dynamic schedules where all scheduling deci-
sions are made dynamically. Moreover, we use the iterative
version of the ATC heuristic(VMH(I)) to generate static
schedules. These scheduling procedures are then simulated
under various levels of processing time variations.
Specifically, we generate perturbed processing times py as

follows : pi'= pi £ Exp (1) where 1=5, 10, 15, 20, ..., 60.

In the case where p; becomes negative, we set it to 1.
Table 2 summarizes the simulation results for the case
where t=15. Each entry in the table represents the average
total weighted tardiness of 100 simulation runs. As can be
seen from the table IBH methods in general, outperform
the PDH. Furthermore, IBH(UB) is slightly better than
IBH(LB). In the simulation study, we further investigated
the effect of different levels of disturbances. We compare
the performance of VAP heuristics with the traditional stat-
ic and dynamic scheduling methods. The performance of
static schedules deteriorates rapidly as the level of un-
certainty increases. The VAP and the dynamic schedules,
on the other hand, appear to be much more robust.

6. Conclusions

This research describes a new decomposition method for
the job shop scheduling problem using a variant of the
classical assignment formulation. There are some character-
istics of this approach which differentiate it from existing
ideas dealing with JSP. First of all, using a graph theoret-
ical approach, the proposed decomposition method offers
computational efficiency. A machine scheduling and se-
quencing problem can be partitioned into a number of
smaller problems so that less computational effort is required.
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<Table 2> Simulation Results for 7=15.

S 018 IIFEYIXIA K A0t 2N

10x10 { PDH(LB) PDH(UB) IBH(LB) IBH(UB)
abz5 10414 11823 10595 12878
al6 7386 6515 4414 4185
1a20 8228 7556 6019 5287
mt10 10252 12650 8331 8715
orb6 6944 7326 8554 7645
30x10
la31 28980 34019 18917 20789
1a33 30542 30959 18333 16036
la34 28574 36573 28183 22878
20x15
abz7 28367 31710 22044 18881
abz8 29233 30690 28228 26243
abz9 26462 23804 21986 22139

Since many JSPs are too large to be solved economically
by existing algorithms, the decomposition approach provides
an obvious improvement. Secondly, for on-line control pur-
poses, decomposition provides more flexible and more ro-
bust schedules in situations involving shop disturbances.
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