• 제목/요약/키워드: industrial robots

검색결과 487건 처리시간 0.024초

산업용 로봇의 사용실태에 관한 조사 연구 (Site Survey on the Safe use of the Industrial Robots)

  • 이홍석;신운철;권혁면;이준석
    • 한국안전학회지
    • /
    • 제27권5호
    • /
    • pp.22-29
    • /
    • 2012
  • Robot related injuries in industrial accidents statistics during 2008~2010 have accounted for a total of 109 cases equivalent to 30~40 cases for each of those years. The number of injured compared to the dissemination of industrial robots(51,302 units/2004) can be regarded as quite low. However, the fatal injuries sustained by 7 (6.4%) out of 109 cases paints the stark reality of robot-related accident fatalities. It is a sad probability that as the automation process expands its use of industrial robots which have increased significantly in demand, the incidence of workplace accidents will also increase. Therefore, the incidence of accidents throughout the period of 2008~2010 has been analysed to prevent the injuries due to the increased use of industrial robots. In the analysis, the injuries occurred during the industrial robot operation accounted for 45.9% of the entire accidents. Thus, we examined the present status of the industrial robot operation to analyze the root cause of accidents occurred in our studied time period. We looked at a total of 469 workplaces. 456 workplaces responded in the year 2009 and survey studies were implemented at 13 of the 29 workplaces where work injuries were sustained in the year 2010. Even where protective measures and interlock devices were in place, our studies indicated that workers could access the robot area to perform the tasks in 188 sites(40.1%). Also, the 143 sites(30.5%) had control measures and equipment located in the safety fence. In addition, the robots found at 164 sites(35.0%) could be restarted without additional restarting operation. These three causes accounted for most of the workplace injuries during the industrial robot operations. Futhermore, we confirmed the fact that the protective measures of the current safety regulations were not strictly enforced. Based upon our studies and the investigation of the present status of the industrial robot operation, higher standards in training and supervision of workers in the robot operation must quickly be met in order to prevent these industrial injuries.

로봇의 관절외란해석을 이용한 직선궤적 위치결정 (Joint disturbance torque analysis for robots and its application in straight line path placement)

  • 최명환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1824-1827
    • /
    • 1997
  • Majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is influenced greatly by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and makes the high speed-high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2DOF planar robot, the conditions for the maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solutioin to the optimal path placement problem is proposed that minimizes the joint disturbance torque are examined. then, a solution to the optimal path placement problem is proposed that minimizes the joint disturbance torque during a straight line motion. the proposed method is illustrated using computer simulation. the proposed solution method cna be applied to the class of robots that are controlled by independent joint sevo control, which includes the vast majority of industrial robots. By minimizing the joint disturbacne torque during the motion, the simple joint servo controlled robot can move with improved path tracking accuracy at high speed.

  • PDF

독립관절제어 로봇의 관절외란해석과 최적경로위치 문제의 해법 (Joint disturbance torque analysis for independent joint controlled robots and its application in optimal path placement)

  • 최명환
    • 제어로봇시스템학회논문지
    • /
    • 제4권3호
    • /
    • pp.342-348
    • /
    • 1998
  • A majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is greatly influenced by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and hence makes the high speed - high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2 DOF planar robot, the conditions for the minimum and maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solution to the optimal path placement problem is propose that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to a class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF

두 개의 산업용 양팔로봇간의 실시간 동기화 방법 (Real-time Synchronization Between Two Industrial Dual-arm Robots)

  • 최태용;경진호;도현민;박찬훈;박동일
    • 제어로봇시스템학회논문지
    • /
    • 제22권12호
    • /
    • pp.1027-1033
    • /
    • 2016
  • There is an increasing need for manufacturing systems to produce batches in small quantities. Such manufacturing systems are significantly difficult to develop with conventional automation equipment. Recently, several research groups have applied industrial dual-arm robots to cell production lines. A synchronization method for robots is necessary for the cell production process when robots work in a shared workspace. Conventional automation factories do not need this method because the main control system operates all of the machines or robots. However, our intended application for the developed robot is in small manufacturing environments that cannot install an expensive main control system. We propose an inexpensive and high-performance method with a simple digital in/out channel using a real-time communication protocol. The developed method was validated in a pilot production line for cellular phone packing.

산업용 착용식 근력 증강 로봇 스타일링 연구 (A Study of wearable robot styling for the support a industrial work force assistance)

  • 석상호;김형주;배현기
    • 로봇학회논문지
    • /
    • 제9권2호
    • /
    • pp.79-95
    • /
    • 2014
  • We are at the dawn of a new era in which the importance of robots will be evaluated on the basis of not only their functions but also their appearance. Therefore, those manufacturers who continue to develop robots that only offer convenience and do not keep up with the emerging trends might be weeded out from the robot market in the future. This study empirically tested and verified the ways in which the commercial value of wearable robots is enhanced when they are stylishly attired, using user and work environment analysis. For the purpose of this study, a styling development project for wearable robots was undertaken and applied to the actual development of these robots. Based on the results of the study, a new styling process for such robots was established. Those manufacturers who will realize the importance of styling of robots and develop robots using this process shall become the trendsetters in designing stylized robots and lead the robot industry in the future.

The Development of Robot Control System for Nuclear Facilities

  • Lee, Sung-Uk;Kim, Chang-Hoi;Jeong, Seong-Ho;Kim, Seung-Ho
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2003년도 ICCAS
    • /
    • pp.2696-2700
    • /
    • 2003
  • Nuclear robots should be developed for the reduction of radiation exposure, lower man hours, shorter power outage, and also improved worker safety concerns in performing hazardous and dangerous tasks. Among the components of a nuclear robot system, a robot control system equivalent to a human brain is a crucial point because a nuclear robot does not work without a control system. Therefore, in this paper, we will explain the requirements for a robot control system for a nuclear robot from a general point of view and also review the robot control systems of nuclear robots that were developed domestically, to assist a researcher beginning with the design for the control system of nuclear robots. The explained robot control system will be useful to develop the control system for industrial robots, home robots and other robots which are needed for tele-operation and are controlled through the internet.

  • PDF

산업용 로봇의 유연관절 제어기 설계: Part 2 - 진동억제 제어 및 게인스케듈링 (Controller Design for Flexible Joint of Industrial Robots: Part 2 - Vibration Suppression Control and Gain-Scheduling)

  • 박종현;이상훈
    • 제어로봇시스템학회논문지
    • /
    • 제12권4호
    • /
    • pp.371-379
    • /
    • 2006
  • Increasing requirements for the high quality of industrial robot performance made the vibration control issue very important because the vibration makes it difficult to achieve quick response of robot motion and may bring mechanical damage to the robot. This paper presents a vibration control solution for industrial robots which have flexible joints. The joint flexibility is modeled as a two-mass system. And we analyze the vibration problem of a classical P-PI controller when it used for the flexible joints of industrial robots. Then a state feedback controller is designed for vibration suppression of the two-mass system. Finally, a gain-scheduling method is designed for maintaining control performance in spite of the time-varying nature of each joint's load side inertia. Simulation and experimental results show effective vibration suppression and uniform properties in overshoot in spite of the variation of load. The result of this study can be applied to the appropriate gain manipulation of many other mechatronic devices which have the two-mass system with varying load side inertia.

개방형 로봇 플랫폼 기반 미세수술로봇의 안전성 및 성능평가에 관한 연구 (A Study on Safety and Performance Evaluation of Micro - surgical Robots Based on Open Robot Platform)

  • 박준현;호예지;이덕희;최재순
    • 대한의용생체공학회:의공학회지
    • /
    • 제40권5호
    • /
    • pp.206-214
    • /
    • 2019
  • Surgical methods and associated precision systems have been developed, but surgical procedures that require precise location and fine manipulation of the lesion remain a limitation. The combination of precision robot manipulation technology and 3D medical image navigation technology overcomes the limitations of minimally invasive surgery (MIS) and enables a more stable and successful operation. Surgical robots are surgical robots such as da Vince, and surgical robots using industrial robotic arms. There are various developments and researches of medical robots. In recent medical robot development, a new type of surgical robot based on an industrial robot arm capable of easily replacing the end effector according to the user's needs is being actively developed at home and abroad. Therefore, in this study, we developed safety and performance evaluation guideline for micro - surgical robots based on open robot platform using general purpose robot arm to help quality control of the medical device.

Development of Project-based Robot Education Program for Enhancing Interest toward Robots and Computational Thinking of Elementary School Students

  • Kim, Seong-Won;Park, Hyeran;Lee, Youngjun
    • 한국컴퓨터정보학회논문지
    • /
    • 제24권1호
    • /
    • pp.247-255
    • /
    • 2019
  • In this paper, we propose the effect of project-based robot education program on the interest toward robots and the computational thinking of elementary school students. Software education is being actively carried out around the world in order to cultivate software talents in accordance with the 4th industrial revolution. As a result, the importance of robots in education has increased, and education using robots has been actively introduced. However, the activities of simply assembling and repeating robots in schools were not effective in enhancing elementary school students' interest toward robots and computational thinking. Therefore, it is necessary to overcome traditional teaching-learning methods and to develop robot education. So, in this study, the robot education program that introduces project-based learning was developed for improvement of interest toward robots and computational thinking of elementary school students. In order to verify the developed education program, 114 elementary six grade students were selected as research subjects and the traditional teaching-learning method and project-based learning were applied to the experimental and control group. As a result, project-based learning was more effective for elementary school students' interest toward robot than traditional teaching-learning method. In computing thinking, the experimental group showed a significant improvement, but there was no statistically significant difference in the post-test.