• Title/Summary/Keyword: industrial manufacturing robot

Search Result 189, Processing Time 0.026 seconds

A Study on the Camera Calibration Algorithm of Robot Vision Using Cartesian Coordinates

  • Lee, Yong-Joong
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.6
    • /
    • pp.98-104
    • /
    • 2002
  • In this study, we have developed an algorithm by attaching a camera at the end-effector of industrial six-axis robot in order to determine position and orientation of the camera system from cartesian coordinates. Cartesian coordinate as a starting point to evaluate for suggested algorithm, it was easy to confront increase of orientation vector for a linear line point that connects two points from coordinate space applied by recursive least square method which includes previous data result and new data result according to increase of image point. Therefore, when the camera attached to the end-effector has been applied to production location, with a calibration mask that has more than eight points arranged, this simulation approved that it is possible to determine position and orientation of cartesian coordinates of camera system even without a special measuring equipment.

Full Duplex Robot System for Transferring Flat Panel Display Glass (디스플레이용 판유리 이송을 위한 양방향 이송 로봇장치)

  • Lee, Dong Hun;Lee, Chibum;Kim, Sung Dong;Cho, Young Hak
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.22 no.6
    • /
    • pp.996-1002
    • /
    • 2013
  • This study addresses the development of a full duplex robotic system for transferring flat-panel display glass. We propose to accomplish this using a bidirectional linear transfer mechanism in place of the conventional rotary transfer mechanism. The developed full duplex robot comprises a driving part that carries the glass panel laterally, vertical part that can be moved up and down by means of a ball screw and linear motion guide arrangement, and hand part that slides by the cylinder of the driving part along the guide rail with a V-guide bearing attached to the bottom of the support. In addition, an alignment part prevents the hand part from derailing and holds the hand part while the driving part moves horizontally. The full duplex robot lifts and drives a glass panel directly while transferring it to the buffer and does not require rotational motion. Therefore, both transferring and stacking are realized with a single device. This device can be used in existing industrial facilities as an alternative to existing industrial robots in current as well as future process lines. The proposed full duplex robot is expected to save considerable amounts of time and space, and increase product throughput.

Application of Tactile Slippage Sensation Algorithm in Robot Hand Control System

  • Yussof, Hanafiah;Jaffar, Ahmed;Zahari, Nur Ismarrubie;Ohka, Masahiro
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.17 no.4
    • /
    • pp.9-15
    • /
    • 2012
  • This paper presents application of a new tactile slippage sensation algorithm in robot hand control system. The optical three-axis tactile sensor is a type of tactile sensor capable of defining normal and shear forces simultaneously. The tactile sensor is mounted on fingertip of robotic hand. Shear force distribution is used to define slippage sensation in the robot hand system. Based on tactile slippage analysis, a new control algorithm was proposed. To improve performance during object handling motions, analysis of slippage direction is conducted. The control algorithm is classified into two phases: grasp-move-release and grasp-twist motions. Detailed explanations of the control algorithm based on the existing robot arm control system are presented. The experiment is conducted using a bottle cap, and the results reveal good performance of the proposed control algorithm to accomplish the proposed object handling motions.

Development of a 3D Off-Line Graphic Simulator for Industrial Robot (산업용 로봇의 3차원 오프라인 그래픽 시뮬레이터 개발)

  • 장영희;한성현;이만형
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.3
    • /
    • pp.19-25
    • /
    • 2001
  • In this paper, we developed a Windows 98 version Off-Line Programming System which can simulate a Robot model in 3D Graphics space. 4 axes SCARA Robot (especially FARA SM5) was adopted as an objective model. Forward kinemat-ics, inverse kinematics and robot dynamics modeling were included in the developed program. The interface between users and the OLP system in the Windows 98s GUI environment was also studied. The developing is Microsoft Visual C++. Graphic libraries, OpernGL, by silicon Graphics, Inc. were utilized for 3D Graphics.

  • PDF

A study on autonomous Cleaning Robot for Hot-cell Application (핫셀 적용을 위한 벽면주행 청소로봇에 관한 연구)

  • 한상현;김기호;박장진;장원석;이응혁
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.415-415
    • /
    • 2000
  • The functions of a mobile robot such as obstacle knowledge and collision avoidance for in-door cleaning are necessary features, as has been much studied in the field of industrial automatic guided vehicle or general mobile robot. A mobile robot, in order to avoid collision with obstacles, has to gather data with environment knowledge sensors and recognize environment and the shape of obstacles from the data. In the study, a wall-following algorithm was suggested as a autonomous moving algorithm in which a mobile robot can recognize obstacles in indoor like environment and do cleaning work in effect. The system suggested in the study is for cleaning of nuclear material dusts generated in the process of nuclear fuel manufacturing and decontamination of devices in disorder which is performed in M6 radioactive ray shield hot-cell in IMEF(Irradiated Material Examination Facility) in the Korea Atomic Energy Research Institute.

  • PDF

A study on designing spindle stage using optimization of flexure (유연힌지 최적화를 이용한 스핀들 스테이지 설계에 관한 연구)

  • Park, Jaehyun;Kim, Hyo-Young;Yoo, Hyeongmin
    • Design & Manufacturing
    • /
    • v.16 no.3
    • /
    • pp.22-27
    • /
    • 2022
  • The demand for new processing technology that can improve productivity is increasing in industries that require large-scale and various products. In response to this demand, a robot machining system with flexibility is required. Because of the low rigidity of the robot, the robot machining system has a large error during machining and is vulnerable to vibration generated during machining. Vibration generated during machining deteriorates machining quality and reduces the durability of the machine. To solve this problem, a stage for fixing the spindle during machining is required. In order to compensate for the robot's low rigidity, a system combining a piezoelectric actuator for generating a large force and a guide mechanism to actuate with a desired direction is required. Since the rigidity of flexible hinges varies depending on the structure, it is important to optimal design the flexible hinge and high-rigidity system. The purpose of this research is to make analytic model and optimize a flexible hinge and to design a high rigidity stage. In this research, to design a flexible hinge stage, a concept design of system for high rigidity and flexure hinge modeling is carried out. Based on analytic modeling, the optimal design for the purpose of high rigidity is finished and the optimal design results is used to check the error between the modeling and actual simulation results.

The Methodologies of Digital Engineering Applications to Manufacturing Collaborations in Automotive Industries (자동차 산업분야의 효과적인 제조협업 구현을 위한 디지털 엔지니어링 적용 방법론에 대한 연구)

  • Lee, Yoo-Chul;Bae, Hye-Rim
    • IE interfaces
    • /
    • v.25 no.1
    • /
    • pp.87-95
    • /
    • 2012
  • Very special and tentative considerations including emotional aspects are required to apply any new mechanism and methodologies for manufacturing fields due to several reasons. This study reviews the characteristics of manufacturing collaborations through specific cases applied digital engineering to enhance the collaboration performance in manufacturing domains. Two cases of collaboration related with automotive manufacturing process are analyzed to extract meaningful insights for better collaboration model suggestions. The first case deals the robot simulation to find out advance errors in jig and fixture design during the various welding process of body-in-whites. The effective communication protocol to share their idea and agreed schedules are essential for this collaboration. More severe requirement of collaboration between R&D and manufacturing departments are studied in the second case for e-coating process. The invisible barriers among different departments are lowered by the process application of Computer Aided Engineering which can make sure their own interesting effectively. Those technical and managerial suggestions can be used when the information system and standard process are sought to implement and update not only when innovation projects are executed.

Design and Implementation of Educational Robot for Programming Learning (프로그래밍 학습을 위한 교육용 로봇 설계 및 구현)

  • Moon, Chae-Young;Ryoo, Kwang-Ki
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2497-2503
    • /
    • 2012
  • In this study an educational robot for programming education was designed and implemented. The robot in this study is composed of hardware containing a sensor, a processor, and a motor driver circuit, software to control the educational robot, machine parts to manufacture the robot structure, and a teaching material containing educational contents and the manufacturing manual. This robot is characterized by direct programming without a computer, which gives no spatial restrictions on robot education and enables dynamic program education beyond limitations of the existing static computer program education since students' programming results are found in the robot's movements. User-centered functional commands, which make it possible to control the robot with simple knowledge concerning hardware and basic commands, were used to enable even students who first accessed a robot or computer program to make access with ease.

Design of the Proprioceptive Actuator Capable of Simultaneous Bidirectional Driving (양방향 동시 구동이 가능한 고유수용성 구동기의 설계)

  • Park, Hui-Chang;Cho, Yong-Jun;Yun, Hae-Yong;Oh, Jang-Seok;Hong, Hyung-Gil;Kang, Min-Su;Park, Kwan-Hyung;Song, Jae-Bok
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.98-104
    • /
    • 2022
  • Because a robot actuator is directly affected by the external force of the robot and accounts for the largest portion of the robot system weight, developing an optimized actuator suitable for each characteristic of the robot system is essential. Although there have been many developments and studies related to robot actuators in various industrial fields, lightweight and compact actuator designs that can control force are still lacking. In this study, a novel actuator module was developed, and its performance was verified experimentally. The structure and control of various robot systems can be optimized by utilizing the proposed actuator. It can be used for various tasks by sensing external force and through feedback control.