• Title/Summary/Keyword: industrial machinery

Search Result 1,234, Processing Time 0.032 seconds

Determination of Thermal Radiation Emissivity and Absorptivity of Thermal Screens for Greenhouse (온실 스크린의 장파복사 방사율 및 흡수율 결정)

  • Rafiq, Adeel;Na, Wook Ho;Rasheed, Adnan;Kim, Hyeon Tae;Lee, Hyun Woo
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.311-321
    • /
    • 2019
  • Greenhouse farmers often use thermal screens to reduce greenhouse heating expenses during the winter, and for shade during hot, sunny days in the summer, as it is an inexpensive solution to temperature control relative to other available options. However, accurate measurements of their emitted and absorbed radiations are important for the selection of suitable screens that offer maximum performance. Material's ability to save energy is highly dependent on these properties. Limited studies have investigated the measurement of these properties under natural conditions, but they are only applicable to materials having partial porosities. In this work, we describe a new radiation balance method for determining emissive power and absorptive capacity, as well as reflectivity, transmissivity and emissivity of materials having complete and partial transparency by using pyrgeometer and net radiometer. In this study, four materials with zero porosity, were tested. The emissivity value of PE, LD-13, LD-15 and PH-20 was $0.439{\pm}0.020$, $0.460{\pm}0.010$, $0.454{\pm}0.004$, and $0.499{\pm}0.006$, respectively. All tested samples showed high emitted radiation as compared to absorbed radiation.

Development of Structural Model and Analysis of Design Factors for Small Greenhouse of Urban Agriculture (도시농업을 위한 소형온실 설계요인 분석 및 구조모델 개발)

  • Kim, Hyung-Kweon;Ryou, Young-Sun;Kim, Young-Hwa;Lee, Tae-Seok;Oh, Sung-Sik;Lee, Won-Suk;Kim, Yong-Hyeon
    • Journal of Bio-Environment Control
    • /
    • v.28 no.4
    • /
    • pp.388-395
    • /
    • 2019
  • The purpose of this study is to suggest structural model and analyze design factors for the development of small greenhouse standardization model. The average dimensions of small greenhouse desired by urban farmers were 3.3m in width, 1.9m in eaves height, 2.7m in ridge height, 5.7m in length. The cladding materials for small greenhouse were preferred to glass, PC board and plastic film, framework to aluminum alloy and steel, and heating method in electrical energy. In addition, it was analyzed that small greenhouses need to develop structural model by dividing them into entry-level type and high-level type. The roof type that was used for entry-level type was arch shape, framework was steel pipe, cladding material was plastic film. On the other hand, high-level type was used in even span or dutch light type, framework with square hollow steel, cladding materials with glass or PC board. In consideration of these findings and practicality, this study developed four types of small greenhouses. The width, eaves height, ridges height, and length of the small greenhouses of even span type, which were covered with 5mm thick glass and 6mm thick PC board were 3m, 2.2m, 2.9m, and 6m, respectively. The small greenhouse of dutch light type covered with 5mm thick glass was designed with 3.8m in with, 2.2m in eaves height, 2.9m in ridges height, and 6m in length. The width, eaves height, ridges height, and length of the arch shape small greenhouse covered with a 0.15mm PO film were 3m, 1.5m, 2.8m, and 6m, respectively.

Electrochemical Behaviors of Pt-Ru Catalysts on the Surface Treated Mesoporous Carbon Supports for Direct Methanol Fuel Cells (직접메탄올 연료전지용 표면처리된 중형기공 탄소지지체에 담지된 백금-루테늄 촉매의 전기화학적 거동)

  • Kim, Byung-Ju;Seo, Min-Kang;Choi, Kyeong-Eun;Park, Soo-Jin
    • Applied Chemistry for Engineering
    • /
    • v.22 no.2
    • /
    • pp.167-172
    • /
    • 2011
  • In this work, the effect of surface treatment on mesoporous carbons (MCs) supports was investigated by analyzing surface functional groups. MCs were prepared by a conventional templating method using mesoporous silica (SBA-15) for using catalyst supports in direct methanol fuel cells (DMFCs). The MCs were treated with different phosphoric acid ($H_3PO_4$) concentrations i.e., 0, 1, 3, 4, and 5 M at 343 K for 6 h. And then Pt-Ru was deposited onto surface treated MCs (H-MCs) by chemical reduction method. The characteristics of Pt-Ru catalysts deposited onto H-MCs were determined by specific surface area and pore size analyzer, X-ray diffraction, X-ray photoelectron, transmission electron microscopy, and inductive coupled plasma-mass spectrometer. The electrochemical properties of Pt-Ru/H-MCs catalysts were also analyzed by cyclic voltammetry experiments. From the results of surface analysis, an oxygen functional group was introduced to the surface of carbon supports. From the results, the H4M-MCs carbon supports surface treated with 4 M $H_3PO_4$ led to uniform dispersion of Pt-Ru onto H4M-MCs, resulting in enhancing the electro-catalytic activity of Pt-Ru catalysts.

Identification of Sweet Pepper Greenhouse by Analysis of Environmental Data in Greenhouse (온실 내 환경데이터 분석을 통한 파프리카 온실의 식별)

  • Kim, Na-eun;Lee, Kyoung-geun;Lee, Deog-hyun;Moon, Byeong-eun;Park, Jae-sung;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.30 no.1
    • /
    • pp.19-26
    • /
    • 2021
  • In this study, analysis was performed to identify three greenhouses located in the same area using principal component analysis (PCA) and linear discrimination analysis (LDA). The environmental data in the greenhouse were from 3 farms in the same area, and the values collected at 1 hour intervals for a total of 4 weeks from April 1 to April 28 were used. Before analyzing the data, it was pre-processed to normalize the data, and the analysis was performed by dividing it into 80% of the training data and 20% of the test data. As a result of PCA and LDA analysis, it was found that PCA classification accuracy was 57.51% and LDA classification was 67.06%, indicating that it can be classified by greenhouse. Based on the farmhouse data classified in advance, the data of the new environment can be classified into specific groups to determine the tendency of the data. Such data is judged to be a way to increase the utilization of data by facilitating identification.

Prediction of Greenhouse Strawberry Production Using Machine Learning Algorithm (머신러닝 알고리즘을 이용한 온실 딸기 생산량 예측)

  • Kim, Na-eun;Han, Hee-sun;Arulmozhi, Elanchezhian;Moon, Byeong-eun;Choi, Yung-Woo;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.1
    • /
    • pp.1-7
    • /
    • 2022
  • Strawberry is a stand-out cultivating fruit in Korea. The optimum production of strawberry is highly dependent on growing environment. Smart farm technology, and automatic monitoring and control system maintain a favorable environment for strawberry growth in greenhouses, as well as play an important role to improve production. Moreover, physiological parameters of strawberry plant and it is surrounding environment may allow to give an idea on production of strawberry. Therefore, this study intends to build a machine learning model to predict strawberry's yield, cultivated in greenhouse. The environmental parameter like as temperature, humidity and CO2 and physiological parameters such as length of leaves, number of flowers and fruits and chlorophyll content of 'Seolhyang' (widely growing strawberry cultivar in Korea) were collected from three strawberry greenhouses located in Sacheon of Gyeongsangnam-do during the period of 2019-2020. A predictive model, Lasso regression was designed and validated through 5-fold cross-validation. The current study found that performance of the Lasso regression model is good to predict the number of flowers and fruits, when the MAPE value are 0.511 and 0.488, respectively during the model validation. Overall, the present study demonstrates that using AI based regression model may be convenient for farms and agricultural companies to predict yield of crops with fewer input attributes.

Structural Stability Analysis of One-Touch Insertion Type Pipe Joint for Refrigerant (냉매용 원터치 삽입식 파이프 조인트의 안전성 구조해석)

  • Kim, Eun-young;Park, Dong-sam
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.542-549
    • /
    • 2022
  • Purpose: Pipes are widely used as applied devices in many industrial fields such as machinery, electronics, electricity, and plants, and are also widely used in safety-related fields such as firefighting and chemistry. With the diversification of products, the importance of technology in the piping field is also increasing. In particular, when changing the existing copper pipe to stainless steel, it is necessary to evaluate safety and flow characteristics through structural analysis or flow analysis. Method: This study investigated the structural stability of the 6.35 and 15.88 socket models, which are integrated insert type connectors developed by a company, using FEM. For structural analysis, HyperMesh as pre-processor, HYPER VIEW as post-processor, and LS-DYNA as solver were used. Result: In the case of 6.35 socket, the maximum stresses at hook, holder and hinge were 95.02MPa, 19.59MPa and 44.01MPa, respectively, and in case of 15.88 socket, it was 127.7 MPa, 40.09MPa and 45.23MPa, respectively. Conclusion: Comparing the stress distribution of the two socket models, the stress in the 15.88 socket, which has a relatively large outer diameter, appears to be large overall, but it is significantly lower than the yield stress of each material, indicating that there is no problem in structural safety in both models.

A Study on the Dystopia of Korean Juvenile Science Fiction Since the 2000s (2000년대 이후 한국 아동·청소년 과학소설의 디스토피아 연구)

  • Choi, Bae-Eun
    • Journal of Popular Narrative
    • /
    • v.26 no.1
    • /
    • pp.103-132
    • /
    • 2020
  • By analyzing the characteristics and meaning of dystopia in Korean juvenile science fiction, this study aims to search for the principles of juvenile literature responding to the contradictions of scientific technologism in collusion with state capitalism, and to consider its limitations and significance. This study focuses on the juvenile science fiction in which children or teenagers fight against system dystopia functioning as a setting of the story. System dystopia consists of 'fake utopia' and 'concentration camps' holding those excluded from this 'fake utopia'. Young people whose right to life are violated under the system dystopia escape from concentration camps and fight against political power. We don't have many novels that have focused on environmental dystopia, but a nomadic subject is found in works set on Earth after environmental pollution or nuclear explosion. In short, juvenile dystopia science fiction deepens the contradictions of the hierarchical society based on scientific technologism, criticizing the repressive, material-oriented and differential educational realities of our society. They hope that children or teenagers will act as a resistance that sees through the deception and hypocrisy of the social system. These works are significant in that they expose the biopolitics strategy of political power in collusion with industrial capitalism and induce us to reflect on it. However, it seems to be the limit of humanism to equate human life with nature and to warn of dangers of technology, machinery, and material civilization as the counterpart. This paper has the significance of taking a general survey of juvenile dystopia science fiction since the 2000s, and revealing the writers' perception of scientific technologism and its limitations.

Flow Safety Assessment by CFD Analysis in One-Touch Insertion Type Pipe Joint for Refrigerant (CFD 해석을 이용한 냉매용 원터치 삽입식 파이프 조인트의 유동 안전성 평가)

  • Kim, Eun-young;Park, Dong-sam
    • Journal of the Society of Disaster Information
    • /
    • v.18 no.3
    • /
    • pp.550-559
    • /
    • 2022
  • Purpose: Pipes are widely used as applied devices in many industrial fields such as machinery, electronics, electricity, and plants, and are also widely used in safety-related fields such as firefighting and chemistry. With the diversification of products, the importance of technology in the piping field is also increasing. In particular, when changing the existing copper pipe to stainless steel, it is necessary to evaluate safety and flow characteristics through structural analysis or flow analysis. Method: This study investigated the safety by flow analysis of the 6.35 inch socket model, which are integrated insert type connectors developed by a company, using CFD analysis technique. For CDF analysis, RAN model and LES model are used. Result: As results of the analysis, amplitude of the pressure fluctuation acting on the wall of the piping system is formed at a level of 3,780 Pa or less, which is a very small level of pressure compared with the operating pressure or design stress of the refrigerant piping. Conclusion: These results mean that the effect of vibration caused by turbulence on the structural safety of the pipe is negligible.

Strawberry Pests and Diseases Detection Technique Optimized for Symptoms Using Deep Learning Algorithm (딥러닝을 이용한 병징에 최적화된 딸기 병충해 검출 기법)

  • Choi, Young-Woo;Kim, Na-eun;Paudel, Bhola;Kim, Hyeon-tae
    • Journal of Bio-Environment Control
    • /
    • v.31 no.3
    • /
    • pp.255-260
    • /
    • 2022
  • This study aimed to develop a service model that uses a deep learning algorithm for detecting diseases and pests in strawberries through image data. In addition, the pest detection performance of deep learning models was further improved by proposing segmented image data sets specialized in disease and pest symptoms. The CNN-based YOLO deep learning model was selected to enhance the existing R-CNN-based model's slow learning speed and inference speed. A general image data set and a proposed segmented image dataset was prepared to train the pest and disease detection model. When the deep learning model was trained with the general training data set, the pest detection rate was 81.35%, and the pest detection reliability was 73.35%. On the other hand, when the deep learning model was trained with the segmented image dataset, the pest detection rate increased to 91.93%, and detection reliability was increased to 83.41%. This study concludes with the possibility of improving the performance of the deep learning model by using a segmented image dataset instead of a general image dataset.

Methods to Introduce Criminal Remedies to Enahnce Effectiveness of Administrative Technology Misappropriation Investigation (기술침해 행정조사의 실효성제고를 위한 분쟁조정 방안 -형사적 구제방안을 중심으로-)

  • Byung-Soo, Kang;Yong-kil, Kim;Sung-Pil, Park
    • Journal of Arbitration Studies
    • /
    • v.32 no.4
    • /
    • pp.53-85
    • /
    • 2022
  • Small and medium-sized enterprises ("SMEs") are vulnerable to trade secret misappropriation. Korea's legislation for the protection of SMEs' trade secrets and provision of civil, criminal, and administrative remedies includes the SME Technology Protection Act, the Unfair Competition Prevention Act, the Industrial Technology Protection Act, the Mutually Beneficial Cooperation Act, and the Subcontracting Act. Among these acts, the revised SME Technology Protection Act of 2018 introduced the "administrative technology misappropriation investigation system" to facilitate a rapid resolution of SMEs' technology misappropriation disputes. On September 27, 2021, Korea's Ministry of SMEs announced that it had reached an agreement to resolve the dispute between Hyundai Heavy Industries and Samyeong Machinery through the administrative technology misappropriation investigation system. However, not until 3 years and a few months passed since the introduction of the system could it be used to resolve an SME's technology misappropriation dispute with a large corporation. So there arose a question on the usefulness of the system. Therefore, we conducted a comparative legal analysis of Korea's laws enacted to protect trade secrets of SMEs and to address technology misappropriation, focusing on their legislative purpose, protected subject matter, types of misappropriation, and legal remedies. Then we analyzed the administrative technology misappropriation investigation system and the cases where this system was applied. We developed a proposal to enhance the usefulness of the system. The expert interviews of 4 attorneys who are experienced in the management of the system to check the practical value of the proposal. Our analysis shows that the lack of compulsory investigation and criminal sanctions is the fundamental limitation of the system. We propose revising the SME Technology Protection Act to provide correction orders, criminal sanctions, and compulsory investigation. We also propose training professional workforces to conduct digital forensics, enabling terminated SMEs to utilize the system, and assuring independence and fairness of the mediation and arbitration of the technology misappropriation disputes.