• Title/Summary/Keyword: industrial biotechnology

Search Result 1,819, Processing Time 0.035 seconds

Systemic Optimization of Microalgae for Bioactive Compound Production

  • Kim, Jeong-Dong;Lee, Choul-Gyun
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.5
    • /
    • pp.418-424
    • /
    • 2005
  • The complexity of the biological system/biological systems has been fascinating and challenging for a long time. With the advent of mathematical tools with various omics technology, systems biology was born and is already ubiquitous in every area of biology and biotechnology. Microalgal biotechnology is no exception in this new trend. As tens of microalgal genomes become publicly available on the Internet, vast amounts of data from genomics, transcriptomics, and proteomics are reported everyday. Though there has not yet been enough data gathered on microalgal metabolomics, the in silica models for relatively simple cyanobacteria or for organelles, such as chloroplasts, will appear presently. With the help of systems biology, a more in-depth understanding of microalgae will be possible. Consequently, most industrially-interested microalgae can be metabolically redesigned/reconfigured as cell factories. Microalgae will be served as the hosts in white biotechnology.

Deletion of cg1360 Affects ATP Synthase Function and Enhances Production of L-Valine in Corynebacterium glutamicum

  • Wang, Xiaochen;Yang, Hongyu;Zhou, Wei;Liu, Jun;Xu, Ning
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.8
    • /
    • pp.1288-1298
    • /
    • 2019
  • Bacterial ATP synthases drive ATP synthesis by a rotary mechanism, and play a vital role in physiology and cell metabolism. Corynebacterium glutamicum is well known as an industrial workhorse for amino acid production, and its ATP synthase operon contains eight structural genes and two adjacent genes, cg1360 and cg1361. So far, the physiological functions of Cg1360 (GenBank CAF19908) and Cg1361 (GenBank CAF19909) remain unclear. Here, we showed that Cg1360 was a hydrophobic protein with four transmembrane helices (TMHs), while no TMH was found in Cg1361. Deletion of cg1360, but not cg1361, led to significantly reduced cell growth using glucose and acetic acid as carbon sources, reduced F1 portions in the membrane, reduced ATP-driven proton-pumping activity and ATPase activity, suggesting that Cg1360 plays an important role in ATP synthase function. The intracellular ATP concentration in the ${\Delta}cg1360$ mutant was decreased to 72% of the wild type, while the NADH and NADPH levels in the ${\Delta}cg1360$ mutant were increased by 29% and 26%, respectively. However, the ${\Delta}cg1361$ mutant exhibited comparable intracellular ATP, NADH and NADPH levels with the wild-type strain. Moreover, the effect of cg1360 deletion on L-valine production was examined in the L-valine-producing V-10 strain. The final production of L-valine in the $V-10-{\Delta}cg1360$ mutant reached $9.2{\pm}0.3g/l$ in shake flasks, which was 14% higher than that of the V-10 strain. Thus, Cg1360 can be used as an effective engineering target by altering energy metabolism for the enhancement of amino acid production in C. glutamicum.

Long-term Outlook and Implications of the Marine Biotechnology Market in Korea and Abroad (국내외 해양생명공학 산업시장의 장기예측 및 함의)

  • Jang, Duckhee;Kang, Gilmo;Chae, Gi-Young;Kim, Soo-Ji;Jo, Min-Ju;Cha, Jeong-Mi;Ham, Hyun-Kyung
    • Ocean and Polar Research
    • /
    • v.35 no.2
    • /
    • pp.93-105
    • /
    • 2013
  • The marine biotechnology industry is very significant as compared to other industries as one of the driving forces for economic growth in the next generation in Korea. However, the marine biotechnology market has been considered as a component of the biotechnology industry market which made difficult for creating separate research areas in relation to the scope of the relevant industry market as well as making it difficult to establish its own R&D policy strategies. Accordingly, this study was executed to estimate the future long-term market value of the marine biotechnology within the limit of industrial field and to verify the importance of national R&D investment in marine biotechnology on the basis of estimations within the industrial perspective. To this end, we classified the marine biotechnology industry into the four sub-sectors and estimated the domestic and global industrial market in 2010 and 2024. According to the results, the domestic and global market of the marine biotechnology industry will see a remarkable growth by 2024. In particular, the bio-energy, pharmaceutical and functional foods industry markets will achieve astonishing advances. On the basis of the analysis results, Korea has to establish more progressive and aggressive R&D investment strategies to strengthen national competitiveness through the marine biotechnology industry.

Current Status and Applications of Adaptive Laboratory Evolution in Industrial Microorganisms

  • Lee, SuRin;Kim, Pil
    • Journal of Microbiology and Biotechnology
    • /
    • v.30 no.6
    • /
    • pp.793-803
    • /
    • 2020
  • Adaptive laboratory evolution (ALE) is an evolutionary engineering approach in artificial conditions that improves organisms through the imitation of natural evolution. Due to the development of multi-level omics technologies in recent decades, ALE can be performed for various purposes at the laboratory level. This review delineates the basics of the experimental design of ALE based on several ALE studies of industrial microbial strains and updates current strategies combined with progressed metabolic engineering, in silico modeling and automation to maximize the evolution efficiency. Moreover, the review sheds light on the applicability of ALE as a strain development approach that complies with non-recombinant preferences in various food industries. Overall, recent progress in the utilization of ALE for strain development leading to successful industrialization is discussed.

Kinetic Studies on Production of Pullulan by Aureobasidium pullulans

  • Xiaobei Zhan;Xinlei Qian;Yihui Zhu;Lee, Jin-Woo
    • Journal of Life Science
    • /
    • v.11 no.2
    • /
    • pp.116-119
    • /
    • 2001
  • Xinlei studies on the production of pullulan by Aureobasidium pullulans using batch culture in a 15L bioreactor were carried out. The mathematical models were obtained in this study, which provided a reasonable description for the biomass, the product, and the substrate variation with time. The values frets the mathematical models were satisfactorily coincided with the experimental data for the biomass of A. pullulans, the production of pullulan and the utilization of sucrose as the sole carbon source.

  • PDF