Browse > Article

Systemic Optimization of Microalgae for Bioactive Compound Production  

Kim, Jeong-Dong (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Lee, Choul-Gyun (Institute of Industrial Biotechnology, Department of Biological Engineering, Inha University)
Publication Information
Biotechnology and Bioprocess Engineering:BBE / v.10, no.5, 2005 , pp. 418-424 More about this Journal
Abstract
The complexity of the biological system/biological systems has been fascinating and challenging for a long time. With the advent of mathematical tools with various omics technology, systems biology was born and is already ubiquitous in every area of biology and biotechnology. Microalgal biotechnology is no exception in this new trend. As tens of microalgal genomes become publicly available on the Internet, vast amounts of data from genomics, transcriptomics, and proteomics are reported everyday. Though there has not yet been enough data gathered on microalgal metabolomics, the in silica models for relatively simple cyanobacteria or for organelles, such as chloroplasts, will appear presently. With the help of systems biology, a more in-depth understanding of microalgae will be possible. Consequently, most industrially-interested microalgae can be metabolically redesigned/reconfigured as cell factories. Microalgae will be served as the hosts in white biotechnology.
Keywords
cyanobacteria; microalgae; systems biology; optimization; in silico; metabolic reconstruction;
Citations & Related Records

Times Cited By Web Of Science : 12  (Related Records In Web of Science)
Times Cited By SCOPUS : 12
연도 인용수 순위
1 Kitano, H. (2001) Foundations of Systems Biology, MIT Press, Cambridge, MA, USA
2 Tomita, M. and T. Nishioka (2005) Metabolomics: The Frontier of Systems Biology, Spinger-Verlag, Tokyo, Japan
3 Palsson, B. (2002) In silico biology through 'omics'. Nat. Biotechnol. 20: 649-650   DOI   PUBMED   ScienceOn
4 Liang, S., X. Liu, F. Chen, and Z. Chen (2004) Current microalgal health food R & D activities in China. Hydrobiologia 512: 45-48   DOI   ScienceOn
5 http://www.jgi.doe.gov/. DOE Joint Genome Institute
6 Kaneko, T., S. Sato, H. Kotani, A. Tanaka, E. Asamizu, Y. Nakamura, N. Miyajima, M. Hirosawa, M. Sugiura, S. Sasamoto, T. Kimura, T. Hosouchi, A. Matsuno, A. Muraki, N. Nakazaki, K. Naruo, S. Okumura, S. Shimpo, C. Takeuchi, T. Wada, A. Watanabe, M. Yamada, M. Yasuda, and S. Tabata (1996) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. II. Sequence determination of the entire genome and assignment of potential protein-coding regions. DNA Res. 3: 109-136ጀༀ鲒킓툑兇確ಗ⨀ᔀက颐탔ဒ兇颺ಗ⨀ᔀᄀ힕탐ᄒ兇뢺ಗ⨀᠀ሀ闖탐ᄒ兇?ಗ⨀ᔀጀ闖탐ᄒ兇ಗ⨀ᔀ᐀姒탑ᄒ兇ᢻಗ⨀ᘀᔀ帕퇑ᄒ兇㢻ಗ⨀ᔀᘀ岌გᄒ兇墻ಗ⨀ᔀᜀ岌გᄒ兇碻ಗ⨀ᔀ᠀垒郒ᄒ兇颻ಗ⨀᐀ᤀ垒郒ᄒ兇뢻ಗ⨀ᔀᨀ墓ვᄒ兇?ಗ⨀ᔀᬀ鞔퀑ሒ兇ಗ⨀ᔀᰀ鯖ဒሒ兇ᢼಗ⨀ᔀᴀ훍톑ሒ兇㢼ಗ⨀ᔀḀ᪖銒ሒ兇墼ಗ⨀ᔀἀ鼓鎒ሒ兇碼ಗ⨀᐀ 힓鎒ሒ兇颼ಗ⨀ᔀ℀?邔ሒ兇뢼ಗ⨀ᤀ∀?큔ጒ兇?ಗ⨀ᔀ⌀颕킑ጒ兇ಗ⨀ᔀ␀颕킑ጒ兇ᢽಗ⨀ᔀ─咐郐ጒ兇㢽ಗ⨀ᔀ☀鮓郒ጒ兇墽ಗ⨀᐀✀墔탔ጒ兇碽ಗ⨀᐀⠀巑逐ᐒ兇颽ಗ⨀ᔀ⤀巑逐ᐒ兇뢽ಗ⨀ᔀ⨀ퟒ킑ᐒ兇?ಗ⨀ᔀ⬀ퟒ킑ᐒ兇ಗ⨀ᘀⰀퟒ킑ᐒ兇ᢾಗ⨀ᘀⴀ墔탑ᐒ兇㢾ಗ⨀ᔀ⸀墔탑ᐒ兇墾ಗ⨀ᜀ   DOI   ScienceOn
7 Schmitt Jr., W. A. and G. Stephanopoulos (2003) Prediction of transcriptional profiles of Synechocystis PCC6803 by dynamic autoregressive modeling of DNA microarray data. Biotechnol. Bioeng. 84: 855-863   DOI   ScienceOn
8 Burja, A. M., S. Dhamwichukorn, and P. C. Wright (2003) Cyanobacterial postgenomic research and systems biology. Trends Biotechnol. 21: 504-511   DOI   ScienceOn
9 Matsunaga, T., H. Nakayama, M. Okochi, and H. Takeyama (2001) Fluorescent detection of cyanobacterial DNA using bacterial magnetic particles on a MAG-microarray. Biotechnol. Bioeng. 73: 400-405   DOI   ScienceOn
10 Eom, H., C.-G. Lee, and E. Jin, (2005) Gene expression profile in astaxanthin-induced Haematococcus pluvialis using a cDNA microarray. Planta, submitted
11 Whitelegge, J. P., J. E. Katz, K. A. Pihakari, R. Hale, R. Aguilera, S. M. Gomez, K. F. Faull, D. Vavilin, and W. Vermaas (2004) Subtle modification of isotope ratio proteomics; an integrated strategy for expression proteomics. Phytochemistry 65: 1507-1515   DOI   ScienceOn
12 Bernal, A., U. Ear, and N. Kyrpides (2001) Genomes OnLine Database (GOLD): a monitor of genome projects worldwide. Nucleic Acids Res. 29: 126-127   DOI   ScienceOn
13 Mohammady, N. G. D., Y. C. Chen, A. A. El-Mahdy, R. F. Mohammad, and E. D. Mohammady (2005) Temporal alterations of Nannochloropsis salina (Eustigmatophyceae) grown under aqueous diesel fuel stress. J. Appl. Phycol. 17: 161-170   DOI   ScienceOn
14 Lee, R. E. (1989) Phycology, Cambridge University Press, Cambridge, UK
15 Gan, C. S., K. F. Reardon, and P. C. Wright (2005) Comparison of protein and peptide prefractionation methods for the shotgun proteomic analysis of Synechocystis sp. PCC 6803. Proteomics 5: 2468-2478   DOI   ScienceOn
16 Hejazi, M. A. and R. H. Wijffels (2004) Milking of microalgae. Trends Biotechnol. 22: 189-194   DOI   ScienceOn
17 Bailey, J. E. (1999) Lessons from metabolic engineering for functional genomics and drug discovery. Nat. Biotechnol. 17: 616-618   DOI   PUBMED   ScienceOn
18 Kucho, K., K. Okamoto, S. Tabata, H. Fukuzawa, and M. Ishiura (2005) Identification of novel clock-controlled genes by cDNA macroarray analysis in Chlamydomonas reinhardtii. Plant Mol. Biol. 57: 889-906   DOI   ScienceOn
19 Palsson, B. O. (2004) In silico biotechnology: Era of reconstruction and interrogation. Curr. Opin. Biotechnol. 15: 50-51   DOI   PUBMED   ScienceOn
20 Borowitzka, M. A. (1992) Algal biotechnology products and processes - matching science and economics. J. Appl. Phycol. 4: 267-279   DOI
21 Eom, H., Park, S., Lee, C.-G., and Jin, E. (2005) Gene expression profiling of an eukaryotic microalga, Haematococcus pluvialis. J. Microbiol. Biotechnol. in press
22 Chapman, D. J. and K. W. Gellenbeck (1989) A historical perspective of algal biotechnology. In: Algal and Cyanobacterial Biotechnology (Cresswell, R. C., T. A. V. Rees, and H. Shah, Eds.), pp. 1-27. Longman Scientific & Technical, Harlow, UK
23 Kashino, Y., W. M. Lauber, J. A. Carroll, Q. Wang, J. Whitmarsh, K. Satoh, and H. B. Pakrasi (2002) Proteomic analysis of a highly active photosystem II preparation from the cyanobacterium Synechocystis sp. PCC 6803 reveals the presence of novel polypeptides. Biochemistry 41: 8004-8012   DOI   ScienceOn
24 Sazuka, T., M. Yamaguchi, and O. Ohara (1999) Cyano2 Dbase updated: Linkage of 234 protein spots to corresponding genes through N-terminal microsequencing. Electrophoresis 20: 2160-2171   DOI   ScienceOn
25 Wang, Y., J. Sun, and P. R. Chitnis (2000) Proteomic study of the peripheral proteins from thylakoid membranes of the cyanobacterium Synechocystis sp. PCC 6803. Electrophoresis 21: 1746-1754   DOI   ScienceOn
26 Domain, F., L. Houot, F. Chauvat, and C. Cassier-Chauvat (2004) Function and regulation of the cyanobacterial genes lexA, recA and ruvB: LexA is critical to the survival of cells facing inorganic carbon starvation. Mol. Microbiol. 53: 65-80   DOI   ScienceOn
27 Kobayashi, M., T. Ishizuka, M. Katayama, M. Kanehisa, M. Bhattacharyya-Pakrasi, H. B. Pakrasi, and M. Ikeuchi (2004) Response to oxidative stress involves a novel peroxiredoxin gene in the unicellular cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol. 45: 290-299   DOI   ScienceOn
28 Herranen, M., N. Battchikova, P. Zhang, A. Graf, S. Sirpio, V. Paakkarinen, and E. M. Aro (2004) Towards functional proteomics of membrane protein complexes in Synechocystis sp PCC 6803. Plant Physiol. 134: 470-481   DOI   ScienceOn
29 Schwikowski, B., P. Uetz, and S. Fields (2000) A network of protein-protein interactions in yeast. Nat. Biotechnol. 18: 1257-1261   DOI   ScienceOn
30 Vonshak, A. (1997) Spirulina platensis (Arthrospira): Physiology, Cell-biology and Biotechnology, Taylor & Francis, London, UK
31 Palsson, B. (2000) The challenges of in silico biology. Nat. Biotechnol. 18: 1147-1150
32 Huang, F., I. Parmryd, F. Nilsson, A. L. Persson, H. B. Pakrasi, B. Andersson, and B. Norling (2002) Proteomics of Synechocystis sp. strain PCC 6803: Identification of plasma membrane proteins. Mol. Cell. Proteom. 1: 956-966   DOI   ScienceOn
33 http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=genomeprj. NCBI Genome Project
34 Kaneko, T., A. Tanaka, S. Sato, H. Kotani, T. Sazuka, N. Miyajima, M. Sugiura, and S. Tabata (1995) Sequence analysis of the genome of the unicellular cyanobacterium Synechocystis sp. strain PCC6803. I. Sequence features in the 1 Mb region from map positions 64% to 92% of the genome. DNA Res. 2: 153-166   DOI   ScienceOn
35 Norling, B., E. Zak, B. Andersson, and H. Pakrasi (1998) 2D-isolation of pure plasma and thylakoid membranes from the cyanobacterium Synechocystis sp. PCC 6803. FEBS Lett. 436: 189-192   DOI   ScienceOn
36 Wang, S.-B., Q. Hu, M. Sommerfeld, and F. Chen (2004) Cell wall proteomics of the green alga Haematococcus pluvialis (Chlorophyceae). Proteomics 4: 692-708   DOI   ScienceOn
37 Weiner, N. (1948) Cybernetics or Control and Communication in the Animal and the Machine, MIT Press, Cambridge, MA, USA
38 Nelson, N. and A. Ben-Shem (2005) The structure of photosystem I and evolution of photosynthesis. Bioessays 27: 914-922   DOI   ScienceOn
39 http://www.genomesonline.org/. GOLD (Genomes OnLine Database)
40 Taroncher-Oldenburg, G., E. M. Griner, C. A. Francis, and B. B. Ward (2003) Oligonucleotide microarray for the study of functional gene diversity in the nitrogen cycle in the environment. Appl. Environ. Microbiol. 69: 1159-1171   DOI   ScienceOn
41 Hihara, Y., A. Kamei, M. Kanehisa, A. Kaplan, and M. Ikeuchi (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13: 793-806   DOI   ScienceOn
42 Dufosse, L., P. Galaup, A. Yaron, S. M. Arad, P. Blanc, K. N. Chidambara Murthy, and G. A. Ravishankar (2005) Microorganisms and microalgae as sources of pigments for food use: a scientific oddity or an industrial reality$?$Trends Food Sci. Technol. 16, 389-406   DOI   ScienceOn
43 Schroder, W. P. and T. Kieselbach (2003) Update on chloroplast proteomics. Photosynth. Res. 78: 181-193   DOI   ScienceOn