Browse > Article
http://dx.doi.org/10.4014/jmb.1904.04019

Deletion of cg1360 Affects ATP Synthase Function and Enhances Production of L-Valine in Corynebacterium glutamicum  

Wang, Xiaochen (University of Science and Technology of China)
Yang, Hongyu (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences)
Zhou, Wei (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences)
Liu, Jun (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences)
Xu, Ning (Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences)
Publication Information
Journal of Microbiology and Biotechnology / v.29, no.8, 2019 , pp. 1288-1298 More about this Journal
Abstract
Bacterial ATP synthases drive ATP synthesis by a rotary mechanism, and play a vital role in physiology and cell metabolism. Corynebacterium glutamicum is well known as an industrial workhorse for amino acid production, and its ATP synthase operon contains eight structural genes and two adjacent genes, cg1360 and cg1361. So far, the physiological functions of Cg1360 (GenBank CAF19908) and Cg1361 (GenBank CAF19909) remain unclear. Here, we showed that Cg1360 was a hydrophobic protein with four transmembrane helices (TMHs), while no TMH was found in Cg1361. Deletion of cg1360, but not cg1361, led to significantly reduced cell growth using glucose and acetic acid as carbon sources, reduced F1 portions in the membrane, reduced ATP-driven proton-pumping activity and ATPase activity, suggesting that Cg1360 plays an important role in ATP synthase function. The intracellular ATP concentration in the ${\Delta}cg1360$ mutant was decreased to 72% of the wild type, while the NADH and NADPH levels in the ${\Delta}cg1360$ mutant were increased by 29% and 26%, respectively. However, the ${\Delta}cg1361$ mutant exhibited comparable intracellular ATP, NADH and NADPH levels with the wild-type strain. Moreover, the effect of cg1360 deletion on L-valine production was examined in the L-valine-producing V-10 strain. The final production of L-valine in the $V-10-{\Delta}cg1360$ mutant reached $9.2{\pm}0.3g/l$ in shake flasks, which was 14% higher than that of the V-10 strain. Thus, Cg1360 can be used as an effective engineering target by altering energy metabolism for the enhancement of amino acid production in C. glutamicum.
Keywords
ATP synthase; cg1360; C. glutamicum; L-valine production;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wada M, Narita K, Yokota A. 2007. Alanine production in an $H^+$-ATPase- and lactate dehydrogenase-defective mutant of Escherichia coli expressing alanine dehydrogenase. Appl. Microbiol. Biotechnol. 76: 819-825.   DOI
2 Koch-Koerfges A, Kabus A, Ochrombel I, Marin K, Bott M. 2012. Physiology and global gene expression of a Corynebacterium glutamicum ${\Delta}F1Fo$-ATP synthase mutant devoid of oxidative phosphorylation. Biochim. Biophys. Acta 1817: 370-380.   DOI
3 Kalinowski J, Bathe B, Bartels D, Bischoff N, Bott M, Burkovski A, et al. 2003. The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of L-aspartate-derived amino acids and vitamins. J. Biotechnol. 104: 5-25.   DOI
4 Aoki R, Wada M, Takesue N, Tanaka K, Yokota A. 2005. Enhanced glutamic acid production by a $H^+$-ATPase-defective mutant of Corynebacterium glutamicum. Biosci. Biotechnol. Biochem. 69: 1466-1472.   DOI
5 Reinscheid DJ, Schnicke S, Rittmann D, Zahnow U, Sahm H, Eikmanns BJ. 1999. Cloning, sequence analysis, expression and inactivation of the Corynebacterium glutamicum pta-ack operon encoding phosphotransacetylase and acetate kinase. Microbiology 145 (Pt 2): 503-513.   DOI
6 Yokota A, Terasawa Y, Takaoka N, Shimizu H, Tomita F. 1994. Pyruvic acid production by an F1-ATPase-defective mutant of Escherichia coli W1485lip2. Biosci. Biotechnol. Biochem. 58: 2164-2167.   DOI
7 Liu LM, Li Y, Du GC, Chen J. 2006. Increasing glycolytic flux in Torulopsis glabrata by redirecting ATP production from oxidative phosphorylation to substrate-level phosphorylation. J. Appl. Microbiol. 100: 1043-1053.   DOI
8 Fillingame RH, Angevine CM, Dmitriev OY. 2003. Mechanics of coupling proton movements to c-ring rotation in ATP synthase. FEBS Lett. 555: 29-34.   DOI
9 Sekiya M, Nakamoto RK, Al-Shawi MK, Nakanishi-Matsui M, Futai M. 2009. Temperature dependence of single molecule rotation of the Escherichia coli ATP synthase F1 sector reveals the importance of gamma-beta subunit interactions in the catalytic dwell. J. Biol. Chem. 284: 22401-22410.   DOI
10 Becker J, Zelder O, Hafner S, Schroder H, Wittmann C. 2011. From zero to hero--design-based systems metabolic engineering of Corynebacterium glutamicum for L-lysine production. Metab. Eng. 13: 159-168.   DOI
11 Suzuki T, Ozaki Y, Sone N, Feniouk BA, Yoshida M. 2007. The product of uncI gene in F1Fo-ATP synthase operon plays a chaperone-like role to assist c-ring assembly. Proc. Natl. Acad. Sci. USA 104: 20776-20781.   DOI
12 Gay NJ, Walker JE. 1981. The atp operon: nucleotide sequence of the region encoding the alpha-subunit of Escherichia coli ATP-synthase. Nucleic Acids Res. 9: 2187-2194.   DOI
13 Liu J, Hicks DB, Krulwich TA. 2013. Roles of AtpI and two YidC-type proteins from alkaliphilic Bacillus pseudofirmus OF4 in ATP synthase assembly and nonfermentative growth. J. Bacteriol. 195: 220-230.   DOI
14 Gay NJ. 1984. Construction and characterization of an Escherichia coli strain with a uncI mutation. J. Bacteriol. 158: 820-825.   DOI
15 Ozaki Y, Suzuki T, Kuruma Y, Ueda T, Yoshida M. 2008. UncI protein can mediate ring-assembly of c-subunits of F1Fo-ATP synthase in vitro. Biochem. Biophys. Res. Commun. 367: 663-666.   DOI
16 Koebmann BJ, Westerhoff HV, Snoep JL, Nilsson D, Jensen PR. 2002. The glycolytic flux in Escherichia coli is controlled by the demand for ATP. J. Bacteriol. 184: 3909-3916.   DOI
17 Hara KY, Kondo A. 2015. ATP regulation in bioproduction. Microb. Cell Fact. 14: 198.   DOI
18 Nakamoto RK, Baylis Scanlon JA, Al-Shawi MK. 2008. The rotary mechanism of the ATP synthase. Arch. Biochem. Biophys. 476: 43-50.   DOI
19 von Ballmoos C, Wiedenmann A, Dimroth P. 2009. Essentials for ATP synthesis by F1Fo-ATP synthases. Annu. Rev. Biochem. 78: 649-672.   DOI
20 Wada M, Hijikata N, Aoki R, Takesue N, Yokota A. 2008. Enhanced valine production in Corynebacterium glutamicum with defective $H^+$-ATPase and C-terminal truncated acetohydroxyacid synthase. Biosci. Biotechnol. Biochem. 72: 2959-2965.   DOI
21 Tusnady GE, Simon I. 2010. Topology prediction of helical transmembrane proteins: how far have we reached? Curr. Protein Pept. Sci. 11: 550-561.   DOI
22 Zhou J, Liu L, Shi Z, Du G, Chen J. 2009. ATP in current biotechnology: regulation, applications and perspectives. Biotechnol. Adv. 27: 94-101.   DOI
23 Barriuso-Iglesias M, Barreiro C, Sola-Landa A, Martin JF. 2013. Transcriptional control of the F1Fo-ATP synthase operon of Corynebacterium glutamicum: SigmaH factor binds to its promoter and regulates its expression at different pH values. Microb. Biotechnol. 6: 178-188.   DOI
24 Mustafi N, Grunberger A, Kohlheyer D, Bott M, Frunzke J. 2012. The development and application of a single-cell biosensor for the detection of l-methionine and branchedchain amino acids. Metab. Eng. 14: 449-457.   DOI
25 Okibe N, Suzuki N, Inui M, Yukawa H. 2011. Efficient markerless gene replacement in Corynebacterium glutamicum using a new temperature-sensitive plasmid. J. Microbiol. Methods 85: 155-163.   DOI
26 Robert X, Gouet P. 2014. Deciphering key features in protein structures with the new ENDscript server. Nucleic Acids Res. 42: W320-324.   DOI
27 Sawada K, Kato Y, Imai K, Li L, Wada M, Matsushita K, et al. 2012. Mechanism of increased respiration in an $H^+$-ATPase-defective mutant of Corynebacterium glutamicum. J. Biosci. Bioeng. 113: 467-473.   DOI
28 Lee IY, Kim MK, Park YH, Lee SY. 1996. Regulatory effects of cellular nicotinamide nucleotides and enzyme activities on poly(3-hydroxybutyrate) synthesis in recombinant Escherichia coli. Biotechnol. Bioeng. 52: 707-712.   DOI
29 Causey TB, Shanmugam KT, Yomano LP, Ingram LO. 2004. Engineering Escherichia coli for efficient conversion of glucose to pyruvate. Proc. Natl. Acad. Sci. USA 101: 2235-2240.   DOI
30 Park SH, Kim HU, Kim TY, Park JS, Kim SS, Lee SY. 2014. Metabolic engineering of Corynebacterium glutamicum for L-arginine production. Nat. Commun. 5: 4618.   DOI
31 Causey TB, Zhou S, Shanmugam KT, Ingram LO. 2003. Engineering the metabolism of Escherichia coli W3110 for the conversion of sugar to redox-neutral and oxidized products: homoacetate production. Proc. Natl. Acad. Sci. USA 100: 825-832.   DOI
32 Jojima T, Fujii M, Mori E, Inui M, Yukawa H. 2010. Engineering of sugar metabolism of Corynebacterium glutamicum for production of amino acid L-alanine under oxygen deprivation. Appl. Microbiol. Biotechnol. 87: 159-165.   DOI
33 Bartek T, Blombach B, Zonnchen E, Makus P, Lang S, Eikmanns BJ, et al. 2010. Importance of NADPH supply for improved L-valine formation in Corynebacterium glutamicum. Biotechnol. Prog. 26: 361-371.
34 Lanzetta PA, Alvarez LJ, Reinach PS, Candia OA. 1979. An improved assay for nanomole amounts of inorganic phosphate. Anal. Biochem. 100: 95-97.   DOI
35 Sihto HM, Tasara T, Stephan R, Johler S. 2014. Validation of reference genes for normalization of qPCR mRNA expression levels in Staphylococcus aureus exposed to osmotic and lactic acid stress conditions encountered during food production and preservation. FEMS Microbiol. Lett. 356: 134-140.   DOI
36 Xu N, Zheng Y, Wang X, Krulwich TA, Ma Y, Liu J. 2018. The Lysine 299 residue endows the multisubunit Mrp1 antiporter with dominant roles in $Na^+$ resistance and pH homeostasis in Corynebacterium glutamicum. Appl. Environ. Microbiol. 84: e00110-118.
37 Liu J, Fujisawa M, Hicks DB, Krulwich TA. 2009. Characterization of the functionally critical AXAXAXA and PXXEXXP motifs of the ATP synthase c-subunit from an Alkaliphilic Bacillus. J. Biol. Chem. 284: 8714-8725.   DOI
38 Wang X, Peng F, Dong G, Sun Y, Dai X, Yang Y, et al. 2018. Identification and validation of appropriate reference genes for qRT-PCR analysis in Corynebacterium glutamicum. FEMS Microbiol. Lett. 365(8): doi: 10.1093/femsle/fny030.   DOI
39 Li ZJ, Cai L, Wu Q, Chen GQ. 2009. Overexpression of NAD kinase in recombinant Escherichia coli harboring the phbCAB operon improves poly(3-hydroxybutyrate) production. Appl. Microbiol. Biotechnol. 83: 939-947.   DOI
40 Shi F, Huan X, Wang X, Ning J. 2012. Overexpression of NAD kinases improves the L-isoleucine biosynthesis in Corynebacterium glutamicum ssp. lactofermentum. Enzyme Microb. Technol. 51: 73-80.   DOI
41 Wen S, Chen X, Xu F, Sun H. 2016. Validation of reference genes for real-time quantitative PCR (qPCR) analysis of Avibacterium paragallinarum. PLoS One 11: e0167736.   DOI
42 Hicks DB, Liu J , Fujisawa M, Krulwich TA. 2010. F1Fo-ATP synthases of alkaliphilic bacteria: lessons from their adaptations. Biochim. Biophys. Acta 1797: 1362-1377.   DOI
43 Kulish O, Wright AD, Terentjev EM. 2016. F1 rotary motor of ATP synthase is driven by the torsionally-asymmetric drive shaft. Sci. Rep. 6: 28180.   DOI
44 Nesci S, Trombetti F, Ventrella V, Pagliarani A. 2015. Opposite rotation directions in the synthesis and hydrolysis of ATP by the ATP synthase: hints from a subunit asymmetry. J. Membr. Biol. 248: 163-169.   DOI
45 Capaldi RA, Aggeler R. 2002. Mechanism of the F1Fo-type ATP synthase, a biological rotary motor. Trends Biochem. Sci. 27: 154-160.   DOI
46 Neupane P, Bhuju S, Thapa N, Bhattarai HK. 2019. ATP Synthase: structure, function and inhibition. Biomol. Concepts 10: 1-10.   DOI