Browse > Article
http://dx.doi.org/10.4014/jmb.2003.03072

Current Status and Applications of Adaptive Laboratory Evolution in Industrial Microorganisms  

Lee, SuRin (Department of Biotechnology, the Catholic University of Korea)
Kim, Pil (Department of Biotechnology, the Catholic University of Korea)
Publication Information
Journal of Microbiology and Biotechnology / v.30, no.6, 2020 , pp. 793-803 More about this Journal
Abstract
Adaptive laboratory evolution (ALE) is an evolutionary engineering approach in artificial conditions that improves organisms through the imitation of natural evolution. Due to the development of multi-level omics technologies in recent decades, ALE can be performed for various purposes at the laboratory level. This review delineates the basics of the experimental design of ALE based on several ALE studies of industrial microbial strains and updates current strategies combined with progressed metabolic engineering, in silico modeling and automation to maximize the evolution efficiency. Moreover, the review sheds light on the applicability of ALE as a strain development approach that complies with non-recombinant preferences in various food industries. Overall, recent progress in the utilization of ALE for strain development leading to successful industrialization is discussed.
Keywords
Industrial strain development; adaptive laboratory evolution; systems metabolic engineering;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Wong BG, Mancuso CP, Kiriakov S, Bashor CJ, Khalil AS. 2018. Precise, automated control of conditions for high-throughput growth of yeast and bacteria with eVOLVER. Nat. Biotechnol. 36: 614-623.   DOI
2 Curran KA, Leavitt JM, Karim AS, Alper HS. 2013. Metabolic engineering of muconic acid production in Saccharomyces cerevisiae. Metab. Eng. 15: 55-66.   DOI
3 Kao KC, Sherlock G. 2008. Molecular characterization of clonal interference during adaptive evolution in asexual populations of Saccharomyces cerevisiae. Nat. Genet. 40: 1499-1504.   DOI
4 Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y, Baba M, et al. 2006. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol. Syst. Biol. 2: 2006.0008.
5 Domingues L, Teixeira JA, Lima N. 1999. Construction of a flocculent Saccharomyces cerevisiae fermenting lactose. Appl. Microbiol. Biotechnol. 51: 621-626.   DOI
6 Kuyper M, Hartog MMP, Toirkens MJ, Almering MJH, Winkler AA, van Dijken JP, et al. 2005. Metabolic engineering of a xyloseisomerase-expressing Saccharomyces cerevisiae strain for rapid anaerobic xylose fermentation. FEMS Yeast Res. 5: 399-409.   DOI
7 Herring CD, Raghunathan A, Honisch C, Patel T, Applebee MK, Joyce AR, et al. 2006. Comparative genome sequencing of Escherichia coli allows observation of bacterial evolution on a laboratory timescale. Nat. Genet. 38: 1406-1412.   DOI
8 Monk JM, Lloyd CJ, Brunk E, Mih N, Sastry A, King Z, et al. 2017. iML1515, a knowledgebase that computes Escherichia coli traits. Nat. Biotechnol. 35: 904-908.   DOI
9 Lu H, Li F, Sanchez BJ, Zhu Z, Li G, Domenzain I, et al. 2019. A consensus Saccharomyces cerevisiae metabolic model Yeast8 and its ecosystem for comprehensively probing cellular metabolism. Nat. Commun. 10: 3586.   DOI
10 Ibarra RU, Edwards JS, Palsson BO. 2002. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420: 186-189.   DOI
11 Choe D, Lee JH, Yoo M, Hwang S, Sung BH, Cho S, et al. 2019. Adaptive laboratory evolution of a genome-reduced Escherichia coli. Nat. Commun. 10: 935.   DOI
12 Si T, Lian J, Zhao H. 2017. Strain Development by Whole-Cell Directed Evolution, pp. 173-200. In Alcalde M (ed.), Directed Enzyme Evolution: Advances and Applications, Ed. Springer International Publishing, Cham
13 Conrad TM, Lewis NE, Palsson BO. 2011. Microbial laboratory evolution in the era of genome-scale science. Mol. Syst. Biol. 7: 509-509.   DOI
14 Portnoy VA, Bezdan D, Zengler K. 2011. Adaptive laboratory evolution-harnessing the power of biology for metabolic engineering. Curr. Opin. Biotechnol. 22: 590-594.   DOI
15 Winkler JD, Kao KC. 2014. Recent advances in the evolutionary engineering of industrial biocatalysts. Genomics 104: 406-411.   DOI
16 Winkler J, Reyes LH, Kao KC. 2013. Adaptive laboratory evolution for strain engineering. Methods Mol. Biol. 985: 211-222.   DOI
17 Elena SF, Lenski RE. 2003. Evolution experiments with microorganisms: the dynamics and genetic bases of adaptation. Nat. Rev. Genet. 4: 457-469.   DOI
18 Choi KR, Jang WD, Yang D, Cho JS, Park D, Lee SY. 2019. Systems metabolic engineering strategies: Integrating systems and synthetic biology with metabolic engineering. Trends Biotechnol. 37: 817-837.   DOI
19 Grabar TB, Zhou S, Shanmugam KT, Yomano LP, Ingram LO. 2006. Methylglyoxal bypass identified as source of chiral contamination in l(+) and d(-)-lactate fermentations by recombinant Escherichia coli. Biotechnol. Lett. 28: 1527-1535.   DOI
20 Jin T, Chen Y, Jarboe LR. 2016. Chapter 10 - Evolutionary methods for improving the production of biorenewable fuels and chemicals, pp. 265-290. In Eckert CA, Trinh CT (eds.), Biotechnology for Biofuel Production and Optimization, Ed. Elsevier, Amsterdam
21 Herbert D, Elsworth R, Telling RC. 1956. The continuous culture of bacteria; a theoretical and experimental study. J. Gen. Microbiol. 14: 601-622.   DOI
22 Rao VSH, Rao PRS. 2004. Global stability in chemostat models involving time delays and wall growth. Nonlinear Analysis: Real World Applications. 5: 141-158.   DOI
23 Radek A, Tenhaef N, Muller MF, Brusseler C, Wiechert W, Marienhagen J, et al. 2017. Miniaturized and automated adaptive laboratory evolution: evolving Corynebacterium glutamicum towards an improved d-xylose utilization. Bioresour. Technol. 245: 1377-1385.   DOI
24 Wu G, Yan Q, Jones JA, Tang YJ, Fong SS, Koffas MAG. 2016. Metabolic burden: cornerstones in synthetic biology and metabolic engineering applications. Trends Biotechnol. 34: 652-664.   DOI
25 Schwentner A, Feith A, Munch E, Busche T, Ruckert C, Kalinowski J, et al. 2018. Metabolic engineering to guide evolution - creating a novel mode for L-valine production with Corynebacterium glutamicum. Metab. Eng. 47: 31-41.   DOI
26 Lee S-W, Oh M-K. 2015. A synthetic suicide riboswitch for the high-throughput screening of metabolite production in Saccharomyces cerevisiae. Metab. Eng. 28: 143-150.   DOI
27 Palsson BO. 2015. Adaptive Laboratory Evolution, pp. 422-437. Systems Biology: Constraint-based Reconstruction and Analysis, Ed. Cambridge University Press, Cambridge
28 Kocabas P, Calik P, Calik G, Ozdamar TH. 2017. Analyses of extracellular protein production in Bacillus subtilis - II: genome-scale metabolic model reconstruction based on updated gene-enzyme-reaction data. Biochem. Eng. J. 127: 229-241.   DOI
29 Lee DH, Feist AM, Barrett CL, Palsson BO. 2011. Cumulative number of cell divisions as a meaningful timescale for adaptive laboratory evolution of Escherichia coli. PLoS One 6: e26172.   DOI
30 Zhang Y, Cai J, Shang X, Wang B, Liu S, Chai X, et al. 2017. A new genome-scale metabolic model of Corynebacterium glutamicum and its application. Biotechnol. Biofuels 10: 169.   DOI
31 Lu Y, Ye C, Che J, Xu X, Shao D, Jiang C, et al. 2019. Genomic sequencing, genome-scale metabolic network reconstruction, and in silico flux analysis of the grape endophytic fungus Alternaria sp. MG1. Microb. Cell Fact. 18: 13.   DOI
32 Kumelj T, Sulheim S, Wentzel A, Almaas E. 2019. Predicting strain engineering strategies using iKS1317: A genome-scale metabolic model of Streptomyces coelicolor. Biotechnol. J. 14: e1800180.   DOI
33 Zuniga C, Levering J, Antoniewicz MR, Guarnieri MT, Betenbaugh MJ, Zengler K. 2018. Predicting dynamic metabolic demands in the photosynthetic eukaryote Chlorella vulgaris. Plant Physiol. 176: 450-462.   DOI
34 Ozcan E, Selvi SS, Nikerel E, Teusink B, Toksoy Oner E, Cakir T. 2019. A genome-scale metabolic network of the aroma bacterium Leuconostoc mesenteroides subsp. cremoris. Appl. Microbiol. Biotechnol. 103: 3153-3165.   DOI
35 Zhou S, Yomano LP, Shanmugam KT, Ingram LO. 2005. Fermentation of 10% (w/v) sugar to D: (-)-lactate by engineered Escherichia coli B. Biotechnol. Lett. 27: 1891-1896.   DOI
36 Royce LA, Yoon JM, Chen Y, Rickenbach E, Shanks JV, Jarboe LR. 2015. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metab. Eng. 29: 180-188.   DOI
37 Wang Y, Tian T, Zhao J, Wang J, Yan T, Xu L, et al. 2012. Homofermentative production of D-lactic acid from sucrose by a metabolically engineered Escherichia coli. Biotechnol. Lett. 34: 2069-2075.   DOI
38 Zhao J, Xu L, Wang Y, Zhao X, Wang J, Garza E, et al. 2013. Homofermentative production of optically pure L-lactic acid from xylose by genetically engineered Escherichia coli B. Microb. Cell Fact. 12: 57.   DOI
39 Kim HJ, Jeong H, Lee SJ. 2020. Short-term adaptation modulates anaerobic metabolic flux to succinate by activating ExuT, a novel D-glucose transporter in Escherichia coli. Front. Microbiol. 11: 27.   DOI
40 Otero JM, Cimini D, Patil KR, Poulsen SG, Olsson L, Nielsen J. 2013. Industrial systems biology of Saccharomyces cerevisiae enables novel succinic acid cell factory. PLoS One 8: e54144.   DOI
41 Leavitt JM, Wagner JM, Tu CC, Tong A, Liu Y, Alper HS. 2017. Biosensor-enabled directed evolution to improve muconic acid production in Saccharomyces cerevisiae. Biotechnol. J. 12(10). doi: 10.1002/biot.201600687.
42 Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW, Levy JM, et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576: 149-157.   DOI
43 Pfeifer E, Gatgens C, Polen T, Frunzke J. 2017. Adaptive laboratory evolution of Corynebacterium glutamicum towards higher growth rates on glucose minimal medium. Sci. Rep. 7: 16780.   DOI
44 Larson MH, Gilbert LA, Wang X, Lim WA, Weissman JS, Qi LSJNp. 2013. CRISPR interference (CRISPRi) for sequence-specific control of gene expression. Nat. Protoc. 8: 2180-2196.   DOI
45 Perez-Pinera P, Kocak DD, Vockley CM, Adler AF, Kabadi AM, Polstein LR, et al. 2013. RNA-guided gene activation by CRISPRCas9-based transcription factors. Nat. Methods 10: 973-976.   DOI
46 Bodi Z, Farkas Z, Nevozhay D, Kalapis D, Lazar V, Csorgo B, et al. 2017. Phenotypic heterogeneity promotes adaptive evolution. PLoS Biol. 15: e2000644-e2000644.   DOI
47 Sen M, Yilmaz U, Baysal A, Akman S, Cakar ZP. 2011. In vivo evolutionary engineering of a boron-resistant bacterium: Bacillus boroniphilus. Antonie van Leeuwenhoek. 99: 825-835.   DOI
48 Sonderegger M, Sauer U. 2003. Evolutionary engineering of Saccharomyces cerevisiae for anaerobic growth on xylose. Appl. Environ. Microbiol. 69: 1990-1998.   DOI
49 Jakociunas T, Pedersen LE, Lis AV, Jensen MK, Keasling JD. 2018. CasPER, a method for directed evolution in genomic contexts using mutagenesis and CRISPR/Cas9. Metab. Eng. 48: 288-296.   DOI
50 Halperin SO, Tou CJ, Wong EB, Modavi C, Schaffer DV, Dueber JE. 2018. CRISPR-guided DNA polymerases enable diversification of all nucleotides in a tunable window. Nature 560: 248-252.   DOI
51 Garst AD, Bassalo MC, Pines G, Lynch SA, Halweg-Edwards AL, Liu R, et al. 2017. Genome-wide mapping of mutations at singlenucleotide resolution for protein, metabolic and genome engineering. Nat. Biotechnol. 35: 48-55.   DOI
52 Zhang Y-X, Perry K, Vinci VA, Powell K, Stemmer WPC, del Cardayre SB. 2002. Genome shuffling leads to rapid phenotypic improvement in bacteria. Nature 415: 644-646.   DOI
53 Alper H, Stephanopoulos G. 2007. Global transcription machinery engineering: a new approach for improving cellular phenotype. Metab. Eng. 9: 258-267.   DOI
54 Wang HH, Isaacs FJ, Carr PA, Sun ZZ, Xu G, Forest CR, et al. 2009. Programming cells by multiplex genome engineering and accelerated evolution. Nature 460: 894-898.   DOI
55 Ravikumar A, Arzumanyan GA, Obadi MKA, Javanpour AA, Liu CC. 2018. Scalable, continuous evolution of genes at mutation rates above genomic error thresholds. Cell 175: 1946-1957.e1913.   DOI
56 Kristjansdottir T, Bosma EF, Branco Dos Santos F, Ozdemir E, Herrgard MJ, Franca L, et al. 2019. A metabolic reconstruction of Lactobacillus reuteri JCM 1112 and analysis of its potential as a cell factory. Microb. Cell Fact. 18: 186.   DOI
57 Loira N, Mendoza S, Paz Cortes M, Rojas N, Travisany D, Genova AD, et al. 2017. Reconstruction of the microalga Nannochloropsis salina genome-scale metabolic model with applications to lipid production. BMC Syst. Biol. 11: 66.   DOI
58 Jiang LY, Chen SG, Zhang YY, Liu JZ. 2013. Metabolic evolution of Corynebacterium glutamicum for increased production of Lornithine. BMC Biotechnol. 13: 47.   DOI
59 Mahr R, Gatgens C, Gatgens J, Polen T, Kalinowski J, Frunzke J. 2015. Biosensor-driven adaptive laboratory evolution of L-valine production in Corynebacterium glutamicum. Metab. Eng. 32: 184-194.   DOI
60 Camps M, Naukkarinen J, Johnson BP, Loeb LA. 2003. Targeted gene evolution in Escherichia coli using a highly error-prone DNA polymerase I. 100: 9727-9732.   DOI
61 Moore CL, Papa LJ, 3rd, Shoulders MD. 2018. A processive protein chimera introduces mutations across defined DNA regions in vivo. J. Am. Chem. Soc. 140: 11560-11564.   DOI
62 Borner RA, Kandasamy V, Axelsen AM, Nielsen AT, Bosma EF. 2019. Genome editing of lactic acid bacteria: opportunities for food, feed, pharma and biotech. FEMS Microbiol. Lett. 366: fny291.   DOI
63 Sandberg TE, Pedersen M, LaCroix RA, Ebrahim A, Bonde M, Herrgard MJ, et al. 2014. Evolution of Escherichia coli to $42^{\circ}C$ and subsequent genetic engineering reveals adaptive mechanisms and novel mutations. Mol. Biol. Evol. 31: 2647-2662.   DOI
64 Luan G, Cai Z, Li Y, Ma Y. 2013. Genome replication engineering assisted continuous evolution (GREACE) to improve microbial tolerance for biofuels production. Biotechnol. Biofuels. 6: 137.   DOI
65 Wang X, Li Q, Sun C, Cai Z, Zheng X, Guo X, et al. 2019. GREACE-assisted adaptive laboratory evolution in endpoint fermentation broth enhances lysine production by Escherichia coli. Microb. Cell Fact. 18: 106.   DOI
66 McBryde C, Gardner JM, de Barros Lopes M, Jiranek V. 2006. Generation of Novel Wine Yeast Strains by Adaptive Evolution. Am. J. Enol. Vitic. 57: 423.
67 Perez-Torrado R, Querol A, Guillamon JM. 2015. Genetic improvement of non-GMO wine yeasts: strategies, advantages and safety. Trends Food Sci. Technol. 45: 1-11.   DOI
68 Lusk JL, Roosen J, Bieberstein A. 2014. Consumer acceptance of new food technologies: causes and roots of controversies. Annu. Rev. Resour. Econ. 6: 381-405.   DOI
69 Hoier E, Janzen T, Rattray F, Sorensen K, Borsting MW, Brockmann E, et al. 2010. The production, application and action of lactic cheese starter cultures, pp. 166-192. Technology of Cheesemaking, Ed.
70 Basso TO, de Kok S, Dario M, do Espirito-Santo JC, Muller G, Schlolg PS, et al. 2011. Engineering topology and kinetics of sucrose metabolism in Saccharomyces cerevisiae for improved ethanol yield. Metab. Eng. 13: 694-703.   DOI
71 Vilela Lde F, de Araujo VP, Paredes Rde S, Bon EP, Torres FA, Neves BC, et al. 2015. Enhanced xylose fermentation and ethanol production by engineered Saccharomyces cerevisiae strain. AMB Express. 5: 16.   DOI
72 Pontrelli S, Fricke RCB, Sakurai SSM, Putri SP, Fitz-Gibbon S, Chung M, et al. 2018. Directed strain evolution restructures metabolism for 1-butanol production in minimal media. Metab. Eng. 49: 153-163.   DOI
73 Smith KM, Liao JC. 2011. An evolutionary strategy for isobutanol production strain development in Escherichia coli. Metab. Eng. 13: 674-681.   DOI
74 Walker ME, Gardner JM, Vystavelova A, McBryde C, de Barros Lopes M, Jiranek VJFyr. 2003. Application of the reuseable, KanMX selectable marker to industrial yeast: construction and evaluation of heterothallic wine strains of Saccharomyces cerevisiae, possessing minimal foreign DNA sequences. 4: 339-347.   DOI
75 Gonzalez R, Tronchoni J, Quiros M, Morales P. 2016. Genetic improvement and genetically modified microorganisms, pp. 71-96. Wine Safety, Consumer Preference, and Human Health, Ed. Springer
76 Csutak O, Sarbu I. 2018. Chapter 6 - Genetically Modified Microorganisms: Harmful or Helpful?, pp. 143-175. In Holban AM, Grumezescu AM (eds.), Genetically Engineered Foods,
77 Snow R. 1983. Genetic improvement of wine yeast, pp. 439-459. Yeast genetics,
78 Bakalinsky AT, Snow R. 1990. The chromosomal constitution of wine strains of Saccharomyces cerevisiae. Yeast 6: 367-382.   DOI
79 Yu S, Zhao Q, Miao X, Shi J. 2013. Enhancement of lipid production in low-starch mutants Chlamydomonas reinhardtii by adaptive laboratory evolution. Bioresour. Technol. 147: 499-507.   DOI
80 Mora Salguero DA, Fernandez-Nino M, Serrano-Bermudez LM, Paez Melo DO, Winck FV, Caldana C, et al. 2018. Development of a chlamydomonas reinhardtii metabolic network dynamic model to describe distinct phenotypes occurring at different $CO_2$ levels. PeerJ. 6: e5528.   DOI
81 Yoneda A, Henson WR, Goldner NK, Park KJ, Forsberg KJ, Kim SJ, et al. 2016. Comparative transcriptomics elucidates adaptive phenol tolerance and utilization in lipid-accumulating Rhodococcus opacus PD630. Nucleic Acids Res. 44: 2240-2254.   DOI
82 Fu W, Guethmundsson O, Paglia G, Herjolfsson G, Andresson OS, Palsson BO, et al. 2013. Enhancement of carotenoid biosynthesis in the green microalga Dunaliella salina with light-emitting diodes and adaptive laboratory evolution. Appl. Microbiol. Biotechnol. 97: 2395-2403.   DOI
83 Chou HH, Keasling JD. 2013. Programming adaptive control to evolve increased metabolite production. Nat. Commun. 4: 2595.   DOI
84 Reyes LH, Gomez JM, Kao KC. 2014. Improving carotenoids production in yeast via adaptive laboratory evolution. Metab. Eng. 21: 26-33.   DOI
85 Hansen ASL, Lennen RM, Sonnenschein N, Herrgard MJ. 2017. Systems biology solutions for biochemical production challenges. Curr. Opin. Biotechnol. 45: 85-91.   DOI
86 Querol A, Fernandez-Espinar MT, del Olmo M, Barrio E. 2003. Adaptive evolution of wine yeast. Int. J. Food Microbiol. 86: 3-10.   DOI
87 Denby CM, Li RA, Vu VT, Costello Z, Lin W, Chan LJG, et al. 2018. Industrial brewing yeast engineered for the production of primary flavor determinants in hopped beer. Nat. Commun. 9: 965.   DOI
88 Pardo E, Rico J, Gil JV, Orejas M. 2015. De novo production of six key grape aroma monoterpenes by a geraniol synthase-engineered Saccharomyces cerevisiae wine strain. Microb. Cell Fact. 14: 136.   DOI
89 Petzold CJ, Chan LJ, Nhan M, Adams PD. 2015. Analytics for metabolic engineering. Front. Bioeng. Biotechnol. 3: 135.   DOI
90 Bergman A, Siewers V. 2016. Metabolic engineering strategies to convert carbohydrates to aviation range hydrocarbons, pp. 151-190. Biofuels for Aviation, Ed.
91 Thiele I, Palsson BO. 2010. A protocol for generating a high-quality genome-scale metabolic reconstruction. Nat. Protoc. 5: 93-121.   DOI
92 Edwards JS, Palsson BO. 1999. Systems properties of the Haemophilus influenzaeRd metabolic genotype. J. Biol. Chem. 274: 17410-17416.   DOI
93 O'Brien EJ, Monk JM, Palsson BO. 2015. Using genome-scale models to predict biological capabilities. Cell 161: 971-987.   DOI
94 Sandberg TE, Lloyd CJ, Palsson BO, Feist AM. 2017. Laboratory evolution to alternating substrate environments yields distinct phenotypic and genetic adaptive strategies. Appl. Environ. Microbiol. 83: e00410-00417.
95 LaCroix RA, Palsson BO, Feist AM. 2017. A model for designing adaptive laboratory evolution experiments. Appl. Environ. Microbiol. 83: e03115-03116.
96 Choi JW, Yim SS, Jeong KJ. 2018. Development of a high-copy-number plasmid via adaptive laboratory evolution of Corynebacterium glutamicum. Appl. Microbiol. Biotechnol. 102: 873-883.   DOI
97 Charusanti P, Fong NL, Nagarajan H, Pereira AR, Li HJ, Abate EA, et al. 2012. Exploiting adaptive laboratory evolution of Streptomyces clavuligerus for antibiotic discovery and overproduction. PLoS One 7: e33727.   DOI
98 Rathore SS, Ramamurthy V, Allen S, Selva Ganesan S, Ramakrishnan J. 2016.Novel approach of adaptive laboratory evolution: Triggers defense molecules in Streptomyces sp. against targeted pathogen. RSC Adv. 6: 96250-96262.   DOI
99 Jantama K, Haupt MJ, Svoronos SA, Zhang X, Moore JC, Shanmugam KT, et al. 2008. Combining metabolic engineering and metabolic evolution to develop nonrecombinant strains of Escherichia coli C that produce succinate and malate. Biotechnol. Bioeng. 99: 1140-1153.   DOI
100 Luo H, Hansen ASL, Yang L, Schneider K, Kristensen M, Christensen U, et al. 2019. Coupling S-adenosylmethionine-dependent methylation to growth: design and uses. PLoS Biol. 17: e2007050.   DOI
101 Guimaraes PM, Francois J, Parrou JL, Teixeira JA, Domingues L. 2008. Adaptive evolution of a lactose-consuming Saccharomyces cerevisiae recombinant. Appl. Environ. Microbiol. 74: 1748-1756.   DOI
102 Kuyper M, Toirkens MJ, Diderich JA, Winkler AA, van Dijken JP, Pronk JT. 2005. Evolutionary engineering of mixed-sugar utilization by a xylose-fermenting Saccharomyces cerevisiae strain. FEMS Yeast Res. 5: 925-934.   DOI
103 Lee SM, Jellison T, Alper HS. 2014. Systematic and evolutionary engineering of a xylose isomerase-based pathway in Saccharomyces cerevisiae for efficient conversion yields. Biotechnol. Biofuels. 7: 122.
104 Horinouchi T, Minamoto T, Suzuki S, Shimizu H, Furusawa C. 2014. Development of an automated culture system for laboratory evolution. J. Lab. Autom. 19: 478-482.   DOI
105 LaCroix RA, Sandberg TE, O'Brien EJ, Utrilla J, Ebrahim A, Guzman GI, et al. 2015. Use of adaptive laboratory evolution to discover key mutations enabling rapid growth of Escherichia coli K-12 MG1655 on glucose minimal medium. Appl. Environ. Microbiol. 81: 17-30.   DOI
106 Strucko T, Zirngibl K, Pereira F, Kafkia E, Mohamed ET, Rettel M, et al. 2018. Laboratory evolution reveals regulatory and metabolic trade-offs of glycerol utilization in Saccharomyces cerevisiae. Metab. Eng. 47: 73-82.   DOI
107 Sandberg TE, Long CP, Gonzalez JE, Feist AM, Antoniewicz MR, Palsson BO. 2016. Evolution of Escherichia coli on [U-13C]glucose reveals a negligible isotopic influence on metabolism and physiology. PLoS One 11: e0151130.   DOI
108 Toprak E, Veres A, Michel JB, Chait R, Hartl DL, Kishony R. 2011. Evolutionary paths to antibiotic resistance under dynamically sustained drug selection. Nat .Genet. 44: 101-105.
109 Toprak E, Veres A, Yildiz S, Pedraza JM, Chait R, Paulsson J, et al. 2013. Building a morbidostat: An automated continuous-culture device for studying bacterial drug resistance under dynamically sustained drug inhibition. Nat. Protoc. 8: 555-567.   DOI
110 Takahashi CN, Miller AW, Ekness F, Dunham MJ, Klavins E. 2015. A low cost, customizable turbidostat for use in Synthetic circuit characterization. ACS Synth. Biol. 4: 32-38.   DOI
111 Heins ZJ, Mancuso CP, Kiriakov S, Wong BG, Bashor CJ, Khalil AS. 2019. Designing automated, high-throughput, continuous cell growth experiments using eVOLVER. J. Vis. Exp. 147: 10.3791/59652.
112 Stella RG, Wiechert J, Noack S, Frunzke J. 2019. Evolutionary engineering of Corynebacterium glutamicum. Biotechnol. J. 14: e1800444.   DOI
113 Shepelin D, Hansen ASL, Lennen R, Luo H, Herrgard MJ. 2018. Selecting the best: evolutionary engineering of chemical production in microbes. Genes (Basel) 9: 249.   DOI
114 Tuyishime P, Wang Y, Fan L, Zhang Q, Li Q, Zheng P, et al. 2018. Engineering Corynebacterium glutamicum for methanoldependent growth and glutamate production. Metab. Eng. 49: 220-231.   DOI
115 Lu L, Wei L, Zhu K, Wei D, Hua Q. 2012. Combining metabolic engineering and adaptive evolution to enhance the production of dihydroxyacetone from glycerol by Gluconobacter oxydans in a low-cost way. Bioresour. Technol. 117: 317-324.   DOI
116 Bennett AF, Hughes BS. 2009. Microbial experimental evolution. 297: R17-R25.   DOI
117 Kering KK, Zhang X, Nyaruaba R, Yu J, Wei H. 2020. Application of adaptive evolution to improve the stability of bacteriophages during storage. Viruses 12: E423.   DOI
118 Bailey LA, Hatton D, Field R, Dickson AJ. 2012. Determination of Chinese hamster ovary cell line stability and recombinant antibody expression during long-term culture. Biotechnol. Bioeng. 109: 2093-2103.   DOI
119 Cakar ZP, Turanli-Yildiz B, Alkim C, Yilmaz U. 2012. Evolutionary engineering of Saccharomyces cerevisiae for improved industrially important properties. FEMS Yeast Res. 12: 171-182.   DOI
120 Zhou S, Shanmugam KT, Ingram LO. 2003. Functional replacement of the Escherichia coli D-(-)-lactate dehydrogenase gene (ldhA) with the L-(+)-lactate dehydrogenase gene (ldhL) from Pediococcus acidilactici. Appl. Environ. Microbiol. 69: 2237-2244.   DOI
121 Zhu K, Lu L, Wei L, Wei D, Imanaka T, Hua Q. 2011. Modification and evolution of Gluconobacter oxydans for enhanced growth and biotransformation capabilities at low glucose concentration. Mol. Biotechnol. 49: 56-64.   DOI
122 Nielsen J. 2017. Systems biology of metabolism. Annu. Rev. Biochem. 86: 245-275.   DOI
123 Phaneuf PV, Gosting D, Palsson BO, Feist AM. 2019. ALEdb 1.0: a database of mutations from adaptive laboratory evolution experimentation. Nucleic Acids Res. 47: D1164-D1171.   DOI
124 Sandberg TE, Salazar MJ, Weng LL, Palsson BO, Feist AM. 2019. The emergence of adaptive laboratory evolution as an efficient tool for biological discovery and industrial biotechnology. Metab. Eng. 56: 1-16.   DOI
125 Fong SS, Joyce AR, Palsson BO. 2005. Parallel adaptive evolution cultures of Escherichia coli lead to convergent growth phenotypes with different gene expression states. Genome Res. 15: 1365-1372.   DOI
126 Hua Q, Joyce AR, Palsson BO, Fong SS. 2007. Metabolic characterization of Escherichia coli strains adapted to growth on lactate. Appl. Environ. Microbiol. 73: 4639-4647.   DOI
127 Lee DH, Palsson BO. 2010. Adaptive evolution of Escherichia coli K-12 MG1655 during growth on a nonnative carbon source, L-1,2-propanediol. Appl. Environ. Microbiol. 76: 4158-4168.   DOI
128 Dragosits M, Mattanovich D. 2013. Adaptive laboratory evolution - principles and applications for biotechnology. Microb. Cell Fact. 12: 64.   DOI
129 Graf M, Haas T, Muller F, Buchmann A, Harm-Bekbenbetova J, Freund A, et al. 2019. Continuous adaptive evolution of a fastgrowing Corynebacterium glutamicum strain independent of protocatechuate. Front. Microbiol. 10: 1648.   DOI
130 Hoskisson PA, Hobbs G. 2005. Continuou culture - making a comeback? Microbiology 151: 3153-3159.   DOI