• 제목/요약/키워드: inductive SFCL

검색결과 32건 처리시간 0.019초

유도형과 저항형 초전도한류기의 파라메타를 고려한 전력계통도입효과의 분석 및 고찰 (On the Current Limiting Characteristics and Parameters of Superconducting Fault Current Limiter Introduced to 345kV Electric Power System due to Resistive-Type, Reactive-Type)

  • 홍원표;김용학;전영환;이승학
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2002년도 학술대회 논문집
    • /
    • pp.285-290
    • /
    • 2002
  • Power systems are becoming larger and larger for meeting electric power demand. Therefore, the over-currents resulting from contingencies such short circuits are increasing higher. The Maximum short circuit current of modern power system is becoming so large that circuit breaker are not expected th be able to shut down the current in the future. In order to cut over-currents, a system composed of a superconducting fault current limiter(SFCL) and traditional breaker seems to provide a promising solution for future power operation. In present paper, three line-to-ground fault is assumed to happen at the center of 345kV transmission lines in a large capacity electric power system The superconducting fault current limiter was represented using a commutation type, which consists of a non-inductive superconducting coil and current limiting element(resistor or reactor). The introduction merits of the SFCL were investigated quantitatively by RTDS/EMTDC from the viewpoint of current limiting performance, the prevention of the voltage drop at the load bus and comparison characteristics for two type SFCL. Desired design specification and operation parameters of SFCL were also given qualitatively by the performance evaluation of the two type SFCL in the power system.

  • PDF

A Study on the Application Impacts on Korean Power System by Introducing SFCL

  • Kim, Jong-Yul;Park, Heung-Kwan;Yoon, Jae-Young
    • KIEE International Transactions on Power Engineering
    • /
    • 제3A권1호
    • /
    • pp.1-6
    • /
    • 2003
  • As power systems grow more complex and power demands increase, the fault current tends to gradually increase. In the near future, the fault current will exceed a circuit breaker rating for some substations, which is an especially important issue in the Seoul metropolitan area because of its highly meshed configuration. Currently, the Korean power system is regulated by changing the 154 ㎸ system configuration from a loop connection to a radial system, by splitting the bus where load balance can be achieved, and by upgrading the circuit breaker rating. A development project applying 154 ㎸ Superconducting Fault Current Limiter(SFCL) to 154 ㎸ transmission systems is proceeding with implementation slated for after 2010. In this paper, the resistive and inductive SFCLs are applied to re-duce the fault current in Korean power system and their technical and economic impacts are evaluated. The results show that the application of SFCL can eliminate the need to upgrade the circuit breaker rat-ing and the economic potential of SFCL is evaluated positively.

고온초전도 응용기기용 과냉질소 냉각시스템의 냉각특성 (Characteristics of Sub-cooled Nitrogen Cryogenic System for Applied High-Tc Superconducting Devices)

  • 강형구;김형진;배덕권;안민철;윤용수;장호명;고태국
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제6권1호
    • /
    • pp.38-42
    • /
    • 2004
  • The cryogenic system for 6.6 kV/200 A inductive superconducting fault current limiter (SFCL) was developed at Yonsei university in 2003. The sub-cooled nitrogen cryogenic system could be applied to not only SFCL but also many other applied high-Tc superconducting (HTS) devices like superconducting motor, superconducting generator and superconducting magnetic energy storage (SMES). Generally, the cooling capacity of GM-cryocooler depends on the load temperature. Therefore it is necessary to perform the cooling capacity test at no load condition to calculate the exact cooling power and heat load of cryogenic system. In this research, the cooling capacity test of GM-cryocooler was executed and the heat load of developed cryogenic system was calculated. The long run operation test results of sub-cooled nitrogen cryogenic system were successful in pressure and temperature condition. Moreover, the design and fabrication method of cryogenic system were introduced and the test results were described.

무유도성 초전도전류제한기의 특성 해석 및 컴퓨터 시뮬레이션 (The Computer Simulation on the Characteristics of the Non-Inductive Superconducting Fault Current Limiter)

  • 주민석;이상진;오윤상;고태국
    • 대한전기학회논문지
    • /
    • 제43권7호
    • /
    • pp.1050-1060
    • /
    • 1994
  • This paper is a study on the computer simulation of the characteristics of the superconducting fault current limiter. Input variable parameters are apparent power, load resistance value, line resistance value and so on. Initial fault current 2 times larger than the trigger current is required to reduce the switching time of SFCL. The propagation velocity increases abruptly, the transport current is several times larger than the ciritical current. In this paper, the switching time is calculated to be 323$\mu$ sec, and the initial fault current is 19 times larger than the critical current. Because the trigger coils are bifilar winding, they have little impedance in superconducting state. After fault occurred, the limiting coil acts as a superconducting reactor and the trigger coils quench at a critical current. Without the SFCL in the circuit, fault current after the load impedence is shorted might be increased to 1100A. The fault current is, therefore, successfully limited by the superconducting limiting coil to 100A determined by the coil inductance.

  • PDF

고온초전도체를 이용한 차폐유도형 전류제한기의 설계 (design of shielded inductive SFCL made of high $T_c$ superconductor)

  • 임성훈;강형곤;박경국;한태희;조동언;한병성
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1998년도 하계학술대회 논문집 D
    • /
    • pp.1531-1533
    • /
    • 1998
  • In this paper, the characteristics of the shielded inductive superconducting fault current limiter was designed and simulated. Parameters of design for superconducting tube, core and primary coil were first determined. And then according to the system characteristics such as load resistance, fault angle and source voltage, the simple power system composed of shielded inductive FCL was simulated by computer-aided numerical analysis. The flowing currents under the fault condition can be limited to about 10 A.

  • PDF

배전급 초전도한류기 및 전력 IT 응용을 위한 실시간 모니터링 시스템 개발 (Development of Distribution Superconducting Fault Current Limiter and its Monitoring System for Power IT Application)

  • 박동근;석복열;고태국;강형구
    • 전기학회논문지
    • /
    • 제57권3호
    • /
    • pp.398-402
    • /
    • 2008
  • Recently, the development of superconducting fault current limiters (SFCLs) has been required as power demands increase in the power system. A distribution-level prototype resistive SFCL using coated conductor (CC) has been developed by Hyundai Heavy Industries Co., Ltd. and Yonsei University for the first time in the world. The ratings of the SFCL are 13.2kV/630A at normal operating condition. A novel non-inductive winding method is used in fabricating coils so there is almost zero impedance during normal operation. The distribution SFCL is cooled by sub-cooled liquid nitrogen $(LN_2)$ of 65K and 3 bar to enhance cryo-dielectric performance, critical current density, and thermal conductivity. In order to make reliable operation of an SFCL in real power systems, we monitored and controled its operation conditions by using supervisory control and data acquisition (SCADA) method. Thus, a monitoring system for the SFCL employing information technology (IT) is proposed and developed to be on the lookout for the operation conditions such as inside temperature, inside pressure, $LN_2$ level, voltage and current. Since operation temperature should be kept constant, bang-bang control for temperature feedback with a heater attached to the cold head of cryo-cooler is applied to the system. Short-circuit tests with prospective fault current of 10kA and AC dielectric withstand voltage tests up to 143kV for 1 minute were successfully performed at Korea Electrotechnology Research Institute. This paper deals with the development of a distribution level SFCL and its monitoring system for reliable operation.

초전도 한류기의 고장전류 제한 효과로 경제성 검토 (A Study on the Technical and Economical Effects of SFCL in Power Systems)

  • 김종율;최흥관;윤재영;김학만
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 추계학술대회 논문집 전력기술부문
    • /
    • pp.256-258
    • /
    • 2002
  • As the power system is more complex and power demands increase, the fault currents have the tendency of increasing gradually. In the near future, it will happen that the fault currents exceed circuit breaker duty for some substations. In this paper, the resistive and inductive SFCL are applied to reduce the fault currents in korea power systems and evaluated technical and economical Impacts.

  • PDF

6.6kV00A급 유도형 초전도한류기의 DC 리액터용 고온 초전도 솔레노이드의 제작 (Fabrication of the HTS Solenoid for DG Reactor of 6.6kV/200A Inductive Superconducting Fault Current Limiter)

  • 김현석;안민철;이승제;이안수;이상진;고태국
    • 한국초전도저온공학회:학술대회논문집
    • /
    • 한국초전도저온공학회 2003년도 추계학술대회 논문집
    • /
    • pp.230-233
    • /
    • 2003
  • This paper deals with the fabrication of high temperature superconducting(HTS) solenoid for DC reactor of 6.6㎸/200A inductive superconducting fault current limiter(SFCL). The winding machine which is suitable to wind HTS wire was manufactured. The proper inductance was calculated by circuit simulation and G10-FRP bobbin was fabricated with this inductance, HTS solenoid was wound by using the winding machine. The V-I characteristic of completed DC reactor in sub-cooled nitrogen(65K) was measured. The full quench current of this magnet is about 490A.

  • PDF

유형별 초전도 한류기의 특성에 대한 시뮬레이션 (Simulation for characteristics of various type SFCLs)

  • 최효상;현옥배;김상준;한병성
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 1999년도 High Temperature Superconductivity Vol.IX
    • /
    • pp.338-342
    • /
    • 1999
  • 전력계통에 저항형과 유도형 초전도 한류기를 적용하였을 때 사고각별 전류제한 효과를 살펴보았다. S1 변전소로부터 S2 변전소까지 거리의 약 60%지점에서 사고가 발생하였을 때, 1선 지락사고에서 S1측 고장전류는 사고각 0 $^{\circ}$ 의 경우 약 39kA이었으며 이는 정상전류의 약 87배이었고, 5주기 이후의 전류값도 53배에 달하는 약 23 kA값을 보여주었다. 차단기 전단에 저항형과 유도형 초전도 한류기를 적용하였을 때 사고각별 전류제한효과를 보면, 사고각 0 $^{\circ}$ 인 경우 저항형은 사고발생 직후 최대 한류전류값이 최고 39 kA, 최종 한류전류값이 약 15 kA이었다. 이때 과도상태에서 직류분은 거의 발생하지 않았다. 유도형은 사고발생 직후 최고 39 kA와 최종 12 kA의 전류값을 나타내었다. 이때 직류분은 약 3 kA이었다. 2선 지락사고에서 고장전류는 사고각 0 $^{\circ}$ 의 경우 최고 약 56 kA이었으며 이는 정상전류의 약124배이었고, 5주기 이후의 전류값도 76배에 달하는 약 34 kA값을 보여주었다. 선로에 저항형과 유도형 초전도 한류기를 적용한 경우 사고각별전류제한 효과를 보면, 사고각이 0 $^{\circ}$ 일때 저항형은 사고발생 직후 최대 한류전류값이 최고 44kA, 최종한류전류값이 약 15 kA이었다. 이때 과도상태에서 직류분은 거의 발생하지 않았다. 유도형은 사고발생 직후 최고 44 kA와 최종 14 kA의 전류값을 보여주었다. 이때 직류분은 약 4 kA이었다. 1, 2선 지락사고를 종합해 보면 2선 지락사고가 사고전류의 크기와 유도형의 직류분 감쇄폭이 약간 컸을 뿐 전력계통에서 초전도 한류기의 적용은 같은 조건(초전도 한류기의 최종 임피던스100${\omega}$)하에서 전류제한 능력면에서는 유도형이 유리하고 초기 과도상태에서 직류성분의 발생측면은 저항형이 장점을 가지고 있음을 알 수 있었다. 아울러 앞으로는 quench 시간에 따른 전류제한 현상에 관한 simulation을 수행 하고자 한다.

  • PDF

Fault Current Limiting Characteristic of Non-inductively Wound HTS Magnets in Sub-cooled $LN_2$ Cooling System

  • Park Dong-Keun;Ahn Min-Cheol;Yang Seong-Eun;Lee Chan-Joo;Seok Bok-Yeol;Yoon Yong-Soo;Ko Tae-Kuk
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제8권2호
    • /
    • pp.29-32
    • /
    • 2006
  • An advanced superconducting fault current limiter (SFCL) using $high-T_c$ superconducting (HTS) wire has been developed. The SFCL has a non-inductively wound magnet for reducing loss in normal state. Two types of non-inductively wound magnets, the solenoid type and the pancake type, were designed and manufactured by using Bi-2223 wire in this research. Short-circuit tests of the magnets were performed in sub-cooled $LN_2$ cooling system of 65 K. The magnets are thermally more stable and have a higher critical current in 65 K sub-cooled $LN_2$ cooling system than in 77 K saturated one. Because the resistivity of matrix at 65 K is lower than the resistivity at 77 K, the magnets generate a small resistance to reduce the fault current when the quench occurs. The magnets could limit the fault current to low current level with such a small resistance. The current limiting characteristic of the magnets was analyzed from the test result. The solenoid type was wound in parallel to make it non-inductive. The pancake type was also connected in parallel to be compared with the solenoid type in the same condition. The solenoid type was found to have a good thermal stability compared with the pancake type. It also had as large resistance as the pancake type to limit the fault current in sub-cooled $LN_2$ cooling system.