• Title/Summary/Keyword: induction therapy

Search Result 404, Processing Time 0.029 seconds

Non-classical role of Galectin-3 in cancer progression: translocation to nucleus by carbohydrate-recognition independent manner

  • Kim, Seok-Jun;Chun, Kyung-Hee
    • BMB Reports
    • /
    • v.53 no.4
    • /
    • pp.173-180
    • /
    • 2020
  • Galectin-3 is a carbohydrate-binding protein and regulates diverse functions, including cell proliferation and differentiation, mRNA splicing, apoptosis induction, immune surveillance and inflammation, cell adhesion, angiogenesis, and cancer-cell metastasis. Galectin-3 is also recommended as a diagnostic or prognostic biomarker of various diseases, including heart disease, kidney disease, and cancer. Galectin-3 exists as a cytosol, is secreted in extracellular spaces on cells, and is also detected in nuclei. It has been found that galectin-3 has different functions in cellular localization: (i) Extracellular galectin-3 mediates cell attachment and detachment. (ii) cytosolic galectin-3 regulates cell survival by blocking the intrinsic apoptotic pathway, and (iii) nuclear galectin-3 supports the ability of the transcriptional factor for target gene expression. In this review, we focused on the role of galectin-3 on translocation from cytosol to nucleus, because it happens in a way independent of carbohydrate recognition and accelerates cancer progression. We also suggested here that intracellular galecin-3 could be a potent therapeutic target in cancer therapy.

Inhibition of Cell Proliferation and Induction of Apoptosis by Methanolic Extract of Aconiti Tuber in Human Renal Cell Carcinoma Cells (부자의 메탄올 추출물에 의한 신세포암의 증식억제 및 세포사멸 유도)

  • Kim, Jong-Hwan;Choi, Yung-Hyun;Hwang, Won-Deuk
    • The Journal of Internal Korean Medicine
    • /
    • v.29 no.1
    • /
    • pp.42-66
    • /
    • 2008
  • Aconiti Tuber is a traditional medicinal plant generally used in Oriental medicine therapy. In this study, we investigated the biochemical mechanisms of anti-proliferative effects by the methanol extract of Aconiti tuber (MEBJ) in Caki-1 human renal cell carcinoma cells. It was found that MEBJ could inhibit, in a dose-dependent manner, cell growth which was associated with apoptotic cell death such as formation of apoptotic bodies, DNA fragmentation and increased populations of apoptotic-sub G1 phase. Apoptosis of Caki-1 cells by MEBJ was associated with an up-regulation of pro-apoptotic Bax expression, and a down-regulation of anti-apoptotic Bcl-2 in a dose-dependent manner; however, the levels of IAP family were not affected. MEBJ treatment also induced the proteolytic activation of caspase-3 and -8, and a inhibition of poly(ADP-ribose) polymerase (PARP) and $PLC{\gamma}1$ protein. Furthermore, MEBJ treatment caused a dose-dependent inhibition of iNOS and cyclooxygenase-2 (Cox-2). Though further studies will be needed to identify the active compounds that confer the anti-cancer activity of MEBJ, the present findings provide important new insights into the possible molecular mechanisms of the apoptotic activity of MEBJ in cancer cells.

  • PDF

Improved Therapeutic Profiles of PLA2-Free Bee Venom Prepared by Ultrafiltration Method

  • Lee, Hyunkyoung;Pyo, Min-Jung;Bae, Seong Kyeong;Heo, Yunwi;Kim, Choul Goo;Kang, Changkeun;Kim, Euikyung
    • Toxicological Research
    • /
    • v.31 no.1
    • /
    • pp.33-40
    • /
    • 2015
  • Bee venom (BV) has long been used in traditional Eastern and Western medicine for chronic inflammation, pain and skin therapy. Human exposure to BV, however, often causes unwanted adverse effects and is even fatal in some cases. Phospholipase $A_2$ ($PLA_2$) of BV is now suspected to play a key role in these adverse effects. We investigated the potential use of $PLA_2$-free bee venom (PBV) as a replacement for BV in cosmetic products. PBV prepared by molecular weight cut-off ultrafiltration exhibits a superior profile in comparison with regular BV, by inhibiting elastase activity and suppressing the induction of nitric oxide (NO) and metalloproteinase-9 (MMP-9), while retaining the effects of cell proliferation and protection against ultraviolet B (UVB)-induced damage in human dermal fibroblast cells. PBV thus appears to be more promising than BV as a cosmetic ingredient with a reduced potential for adverse reactions in the recipient.

Surgical Management of Pyoderma Gangrenosum: A Case Report (괴저성 농피증의 수술적 치험례)

  • Seul, Chul Hwan;Kim, Bom Jin;Lee, Sung Joon;Kim, Sug Won;Chung, Yoon Kyu
    • Archives of Plastic Surgery
    • /
    • v.32 no.1
    • /
    • pp.135-138
    • /
    • 2005
  • Pyoderma gangrenosum(PG) is an uncommon cutaneous vascular disease that typically presents as a painful and destructive ulceration on the anterior surface of the legs. The etiology of PG is currently unknown. But, the association with many immunologic disorders and its clinical response to immunomodulating agents suggest an immune etiology. A common feature of patients with PG is the presence of pathergy(the induction of lesion following injury of the skin). The trauma of surgery can be sufficient to induce pathergy, thus paradoxically limiting the usefulness of surgical treatment of PG. For that reason, medical treatments have been commonly used, while surgical treatments have been regarded not suitable. However, the use of the classic systemic agents is limited by their side effects and contraindications. Moreover, the large, problematic ulcers take too long to heal with medical management only. We present our experience in closing large wounds with the goal of decreasing morbidity, drug side effects and hospital stay by combination of medical and surgical therapy(split thickness skin graft). And authors advocate that surgical management is not a contraindication and may be considered as a selective modality in treatment of PG.

Effect of Thesium Chinense Turczaninow on Breast Cancer Chemopreventive enzyme activity in In vitro (In vitro에서의 댑싸리하고초의 유방암예방효소 활성에 미치는 영향)

  • Shon, Yun-Hee;Kim, Mee-Kyung;Park, Sun-Dong;Nam, Kyung-Soo
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.20 no.3
    • /
    • pp.675-679
    • /
    • 2006
  • The effect of water extract from Thesium chinese Turczaninow (TCTW) on proliferation of human breast cancer cells, nitric oxide production, nitric oxide synthase expression, and ornithine decarboxylase activity was tested. TCTW inhibited the growth of both estrogen-independent MDA-MB-231 and estrogen-dependent MCF-7 human breast cancer cells. Lipopolysaccharide-induced nitric oxide (NO) production was significantly reduced by TCTW at the concentrations of 1.0 (p<0.05) and 5.0 mg/ml (p<0.005). Expression of inducible nitric oxide synthase (iNOS) was also suppressed with the treatment of TCTW in Western blot analysis. TCTW inhibited induction of ornithine decarboxylase by 12-O-tetradecanoylphorbol-13-acetate (TPA), a key enzyme of polyamine biosynthesis, which is enhanced in tumor promotion. Therefore, TCTW is worth further investigation with respect to breast cancer chernoprevention or therapy.

Enhancement of TRAIL-Induced Apoptosis in Human Hepatocellular Carcinoma Cells by Apigenin (인체 간암세포에서 Apigenin에 의한 TRAIL 유도 Apoptosis의 증진 효과)

  • Kim, Eun-Young;Kim, An-Keun
    • YAKHAK HOEJI
    • /
    • v.55 no.1
    • /
    • pp.49-55
    • /
    • 2011
  • Tumor necrosis factor-related apoptosis inducing ligand (TRAIL) is one of the promising anti-cancer agent because of its ability to selectively induce apoptosis in tumor cell lines but not in normal cells. However, TRAIL resistance has been reported in some cancer cells including hepatocarcinoma cells. Therefore, studies of agents that sensitize TRAIL-resistant cancer cells could be a effective therapeutic approach in cancer management. In our study, we examined the effect of combination of TRAIL with apigenin in human hepatocellular carcinoma cells. As a result, the combined use of TRAIL and apigenin significantly enhanced the cytotoxicity in PLC-PRF5 cells. Flow cytometry analysis after annexin V-FITC/PI dual staining showed that this increase of cell cytotoxicity was related to enhanced apoptosis in combined treatment of TRAIL with apigenin. Furthermore, synergistic induction of apoptosis was also confirmed by observation of morphological changes and annexin V-FITC/PI fluorescence. Our findings suggests that apigenin has the potential to improve the efficiency of TRAIL-based therapies in human hepatocellular carcinoma cells. Further study is needed to reveal the molecular mechanisms of this combined therapy.

Full Mouth Rehabilitation of a Patient with Bite Collapse in the Molar Area Using Removable Partial Denture and Dental Implant Prosthetics

  • Hong, Jun-Won;Seo, Jae-Min;Seong, Dong-Hwan;Song, Gwang-Yeop;Park, Ju-Mi;Ahn, Seung-Geun
    • Journal of Korean Dental Science
    • /
    • v.3 no.2
    • /
    • pp.40-49
    • /
    • 2010
  • Dental clinicians often encounter cases wherein the patient's lost molar area was neglected and left untreated for an extended period of time, thereby causing the extrusion of opposite molars and occlusal disharmony as well as occlusion in the anterior teeth and consequently resulting in anterior displacement in the area. Clinicians normally carry out prosthetic treatment via occlusal plane lifting when such becomes absolutely necessary due to the lack of sufficient space needed for prosthetic therapy aimed at proper anterior and lateral induction. In this case report, we examined occlusal disharmony and VDO loss in a patient who had lost his molars and had not received prosthetic treatment for an extended period of time. We treated the maxillary area with dental implant prosthetics and Kennedy Class I RPD and the mandibular area with residual natural tooth-based implant placement and dental implant prosthetics. The patient reported treatment outcomes that were deemed satisfactory both functionally and aesthetically.

  • PDF

Review on Molecular and Chemopreventive Potential of Nimbolide in Cancer

  • Elumalai, Perumal;Arunakaran, Jagadeesan
    • Genomics & Informatics
    • /
    • v.12 no.4
    • /
    • pp.156-164
    • /
    • 2014
  • Cancer is the most dreaded disease in human and also major health problem worldwide. Despite its high occurrence, the exact molecular mechanisms of the development and progression are not fully understood. The existing cancer therapy based on allopathic medicine is expensive, exhibits side effects; and may also alter the normal functioning of genes. Thus, a non-toxic and effective mode of treatment is needed to control cancer development and progression. Some medicinal plants offer a safe, effective and affordable remedy to control the cancer progression. Nimbolide, a limnoid derived from the neem (Azadirachta indica) leaves and flowers of neem, is widely used in traditional medical practices for treating various human diseases. Nimbolide exhibits several pharmacological effects among which its anticancer activity is the most promising. The previous studies carried out over the decades have shown that nimbolide inhibits cell proliferation and metastasis of cancer cells. This review highlights the current knowledge on the molecular targets that contribute to the observed anticancer activity of nimbolide related to induction of apoptosis and cell cycle arrest; and inhibition of signaling pathways related to cancer progression.

Celastrol inhibits gastric cancer growth by induction of apoptosis and autophagy

  • Lee, Hyun-Woo;Jang, Kenny Seung Bin;Choi, Hye Ji;Jo, Ara;Cheong, Jae-Ho;Chun, Kyung-Hee
    • BMB Reports
    • /
    • v.47 no.12
    • /
    • pp.697-702
    • /
    • 2014
  • Recently, the interest in natural products for the treatment of cancer is increasing because they are the pre-screened candidates. In the present study, we demonstrate the therapeutic effect of celastrol, a triterpene extracted from the root bark of Chinese medicine on gastric cancer. The proliferation of AGS and YCC-2 cells were most sensitively decreased in six kinds of gastric cancer cell lines after the treatment with celastrol. Celastrol inhibited the cell migration and increased G1 arrest in cell-cycle populations in both cell lines. The treatment with celastrol significantly induced autophagy and apoptosis and increased the expression of autophagy and apoptosis-related proteins. We also found an increase in phosphorylated AMPK following a decrease in all phosphorylated forms of AKT, mTOR and S6K after the treatment with celastrol. Moreover, gastric tumor burdens were reduced in a dose-dependent manner by celastrol administration in a xenografted mice model. Taken together, celastrol distinctly inhibits the gastric cancer cell proliferation and induces autophagy and apoptosis.

The Effect of Silibinin Extracted from Cirsium Japonicum on Allergic Inflammation (대계(大薊)의 주성분인 Silibinin이 알레르기 염증반응에 미치는 효과(效果))

  • Kim, Beom-Rak;Kim, Koung-Jun
    • The Journal of Korean Medicine Ophthalmology and Otolaryngology and Dermatology
    • /
    • v.23 no.1
    • /
    • pp.44-58
    • /
    • 2010
  • Silibinin is the major active molecule of silymarin, the mixture of flavonolignans extracted from Cirsium japonicum (CJ). It has been used for treatment of hepatitis and inflammation related diseases. The aim of this study was to prove whether Silibinin has effectiveness for allergic inflammation. Silibinin processes the inflammatory reaction in phorbol 12-myristate 13-acetate (PMA) plus calcium ionophore A23187 (PMA plus A23187) stimulated human mast cell line (HMC-1). Its effect was examined by ELISA, RT-PCR, Western blot, and Luciferase assay. The results were Silibinin inhibited the expression of histamine, TNF-$\alpha$ (tumor necrosis factor-$\alpha$), IL-6 (interleukin-6), and IL-8 (interleukin-8). Silibinin suppressed NF-${\kappa}B$ (nuclear factor kappa B) activation in stimulated HMC-1 (human mast cell-1). This effect was mediated through inhibition of phosphorylation and degradation of $IkB{\alpha}$, an inhibitor of NF-kB. Silibinin significantly inhibited induction of NF-kB promoter mediated Luciferase assay. These results suggest that Silibinin has a potential molecule for therapy of mast cell-derived allergic inflammatory diseases.