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Galectin-3 is a carbohydrate-binding protein and regulates diverse 
functions, including cell proliferation and differentiation, mRNA 
splicing, apoptosis induction, immune surveillance and inflam-
mation, cell adhesion, angiogenesis, and cancer-cell metastasis. 
Galectin-3 is also recommended as a diagnostic or prognostic 
biomarker of various diseases, including heart disease, kidney 
disease, and cancer. Galectin-3 exists as a cytosol, is secreted 
in extracellular spaces on cells, and is also detected in nuclei. 
It has been found that galectin-3 has different functions in 
cellular localization: (i) Extracellular galectin-3 mediates cell 
attachment and detachment. (ii) cytosolic galectin-3 regulates 
cell survival by blocking the intrinsic apoptotic pathway, and 
(iii) nuclear galectin-3 supports the ability of the transcriptional 
factor for target gene expression. In this review, we focused on 
the role of galectin-3 on translocation from cytosol to nucleus, 
because it happens in a way independent of carbohydrate 
recognition and accelerates cancer progression. We also sug-
gested here that intracellular galecin-3 could be a potent 
therapeutic target in cancer therapy. [BMB Reports 2020; 
53(4): 173-180]

INTRODUCTION

Galectin-3, as a member of the galectin family, which are rec-
ognized -galactoside-containing glycoconjugates by means of 
carbohydrate-recognition domain (CRD) (1, 2). Based on 
molecular structure, galectin family consists of the 15 members 
and these family are divided into three main groups: 1) 

prototype group (Galectin-1, -2, -5, -7, -10, -11,-13, -14, and 
-15), 2) tandem repeat group (galectin-4, -6, -8, -9, and -12), 
and 3) chimera type (galectin-3) (1, 3-6). Whereas prototype 
galectins are mostly homodimers with two polypeptides each 
containing a CRD, the tandem repeat galectins have two 
CRDs, connected by a linker region (1, 4, 5). Chimeric galectin-3 
consist of one CRD connected to an extended Proline-Glycine- 
Tyrosine tandem repeats region and an N-terminal proline and 
glycine rich domain (3, 5). Galectin family are present in a 
various tissues, whereas others have a more specific location 
(1). Galectins have many functions, such as cell proliferation 
and differentiation, immune response, apoptosis, cancer 
progression, and metastasis (4, 7). The mechanisms underlying 
these aspects are currently the focus of massive research 
projects.

Galectin-3 is the only chimera type in animal lectins. Also, 
galectin-3 is one of the most studied of the galectin family, 
(8-10). It is a versatile 29–35 kDa protein, as an involved in 
multiful biological processes followed in cellular location: cell 
adhesion, cell growth and differentiation, the cell cycle, and 
apoptosis (1, 11, 12). Galectin-3 is situated on chromosome 
14, locus q21–q22 which is coded by a single gene LGALS3 
(13). LGALS3 gene promoter region have a several regulatory 
elements, like a Sp1 binding sites, AP-1 complex, cAMP- 
dependent response element (CRE) motifs, and two NF-kB-like 
sites (10, 11). Galectin-3 mainly exists in the cytosol and is 
secreted out to the extracellular membrane (ECM) (14), but 
galectin-3 is also reported in the nucleus and mitochondria (9, 
15). 

In galectin family, it is known that there is no signal peptide 
to guide you through the classical secretion pathway. In par-
ticular, galectin-3 to go in extracellular space can interact with 
multiple binding partners or generality polylactosamine-rich 
molecules in the extracellular matrix (ECM) or on the surface 
of cells, and plays a major role in the extracellular regulation 
of various cancer progression (5, 16, 17). The non-classical 
secretion mechanism for galectin-3 remains unclear, but recently 
acquired data show that the secreted galactin-3 is regulated by 
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exosomes (18) and that the N-terminal domain serves to 
position the galactin-3 in these structures (6, 10, 19). 

Galectin-3 is also present in the nucleus and cytosol. Espe-
cially, depending on the various cell types and specific experi-
mental conditions, galectin-3 has been reported to be predom-
inantly located in the cytosol and nuclei or distributed between 
the two subcellular compartments (1, 20). Many articles have 
supported galectin-3 localization, transport, and association 
with the interaction of distinct subcellular components (1, 20).

Through the in this review, we were described brief over-
view of the intracellular galectin-3 functions in cancer pro-
gression that are independent of carbohydrate recognition and 
nucleus or cytoplasmic shuttling. 

REGULATION OF GALECTIN-3 EXPRESSION IN 
CANCERS

Despite of expression of galectin-3 in various of tissues and 
cell types, and their involvement in various human diseases, 
this molecule is of particular interest due to its remarkable role 
in controlling cancer progression (21, 22). Galectin-3 is often 
high expressed in various solid and malignant tumors, and this 
case is generally correlated with the progression of cancer, 
suggesting that this molecule plays an important role in disease 
outcome (4, 5). In particular, the expression of galectin-3 in 
cells is characterized by the following malignant cell trans-
formation (23), tumor growth (24), cell adhesion (25), anoikis 
resistance (26, 27), pro- or anti-apoptosis (28-30), angiogenesis 
(31-33), and cell motility (34-36) have been reported. Galectin-3 
expression may also be a potential biomarker of various cancers 
(37). Interestingly, expression of galectin-3 was implicated in 
many cancers (16, 38). Especially, highly expression of 
galectin-3 was detected in stomach, liver, esophagus, thyroid, 
and pancreas cancers (23, 39-44). This highly expressed 
galectin-3 is correlated with cancer progression or metastatic 
potential in various cancers (38, 45). However, contradictory 
results have also been reported, in which the expression of 
galectin-3 was significantly reduced in breast, prostate and 
endometrial cancers (46-49). In addition, expression of galectin-3 
has also been reported to be up-regulated at an early stage of 
intrahepatic cholangiocarcinoma and down-regulated at later 
stage of intrahepatic cholangiocarcinoma (50). Also, galectin-3 
translocation from the nucleus to the cytoplasm during prostate 
carcinoma was observed (51). This implies that decreased 
galectin-3 expression may be associated with alterations in 
cytoplasm / nucleus expression patterns and provides a reason 
why studies on translocation as well as the expression of 
galectin-3 in various carcinomas should be continued.

According to many reports, galectin-3 is not a common and 
obvious marker for various cancers, but it can be a useful 
parameter for diagnosis many tumors. Also, both transcriptional 
and translational galectin-3 expression was regulated by various 
stimulations and ligands. In addition, numerous factors have 
an effect on the complex regulatory mechanism of galectin-3 

(1, 7). For example, the expression of galectin-3 in adenoma 
that prolactin and adrenocorticotropic hormone (ACTH) in the 
pituitary gland and other tumors is associated with the 
galectin-3’s promoter methylation status of the galectin-3 (52). 
Also, regulatory mechanism of galectin-3 expression is not 
directly induced by certain factors, but the cellular differentiation 
state or tissue type has been involved. Moreover, various 
transcription factors, as a RUNX (rent-related protein) family, 
nuclear factor kB (NF-kB), homeodomain-interacting protein 
kinase 2 (HIPK2), and many intracellular signal pathways, such 
as Wnt and Notch signaling, are regulated in the regulation of 
galectin-3 expression (11, 53-56).

MECHANISM OF NUCLEUS AND CYTOPLASMIC 
GALECTIN-3 SHUTTLING 

Nucleus and cytoplasmic shuttling is generally reported as the 
repeated bi-directional movement of proteins across nuclear 
pore complex (7, 20, 57). Both nucleus and cytoplasmic 
shuttling of galectin-3 reported by means of the many articles 
(57, 58). The galectin-3 movement between the nucleus and 
the cytoplasm has been the focus of attention for years (7, 17, 
20). This is because the shuttle of galectin-3 from the nucleus 
to the cytoplasm is necessary because it protects certain cells 
from stress challenges (20, 57). Especially, the N-terminal area 
containing the phosphorylated Ser6 site, plays an important 
role in nuclear transport because the mutation in the Ser6 
interferes with the export of galectin-3 by cytoplasm (1, 12, 
59). CRD of galectin-3 is important for carbohydrate bonding, 
but this structural domain is also important for galectin-3 
localization in cells (1, 7, 12). Recently, galectin-3 is seen as 
an important nuclear protein, which may be evidenced by the 
discovery of both nuclear import sequences (nuclear localiza-
tion sequence; NLS) and nuclear export sequences (NES) 
sequences within the CRD (Fig. 1) (1, 4, 20). The combination 
with Importin  is very important for the movement of 
galectin-3 but the Importin / complex is necessary for the 
transport of galecin-3 (60, 61). Also, export of galectin-3 is 
known to rely on the binding to Nucleoporin 98 (Nup98), and 
the Nup98:XPO1 complex is involved in the nuclear migration 
of galectin-3 (62). 

Also, a mutation of galectin-3 at position 64 of amino-acid 
(rs4644) substituting proline for histidine (gal-3H64) increased 
nuclear galectin-3 in breast and gastric cancers (63, 64). 
Moreover, gal-3H64 enhances gastric cancer progression more 
than wild type galectin-3 (gal-3P64) does. gal-3H64 also 
increased both nuclear accumulation of -catenin and 
expression of TCF-4 target genes, such as fascin-1 and c-Myc, 
by means of the augmented promoter-binding activity of TCF-4 
more than did gal-3P64 (63). Thus, galectin-3 shuttling was 
regulated by the domain or mutation in various cancers and 
was involved in cancer progression. 
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Fig. 1. Structure of galectin-3. Galectin-3 consists of an N-terminal Domain (NTD), which has an N-terminal Region of 12 amino acids (aa) 
and a PGAY repeat motif (12-115aa). The carbohydrate-recognition domain (CRD) 130 aa comprises the C-terminal. Each domain describes 
a binding motif and signaling pathway.

Apoptosis regulated by galectin-3 interacts with carbohydrate 
recognition independent manner 
Galectin-3 involved in diverse signal-transduction cascades 
and pro- or anti-survival processes. Actually, phosphorylated 
galectin-3 is required for anti-apoptotic activity and for phos-
phorylation regulated by carbohydrate recognition (9, 12, 17). 
However, those anti-apoptotic functions of galectin-3 were 
regulated by non-carbohydrate recognition. It was proved that 
galectin-3 interacts Bcl-2 (28). Although galectin-3 is not a 
member included in the Bcl-2 family, interestingly, these 
galectin-3 and Bcl-2 genes have significant sequence similarity 
(48% protein sequence similarity) (28). Especially, CRD region 
of galectin-3 have a four-amino-acid motif, as an Asn-Trp-Gly- 
Arg (NWGR) (amino-acid residues 180–183), which motif is 
highly conserved in Bcl-2 family’s BH-1 domain (amino-acid 
residues 143–146 in Bcl-2 gene) (12, 28). Moreover, galectin-3 
is the only member that contains the NWGR motif in the 
galectin family and that acts as an anti-apoptotic molecule in 
intracellular localization. Therefore, the NWGR motif in CRD 
of galectin-3 is closely involved in anti-apoptotic process through 
interaction with Bcl-2. However, galectin-3 regulates apoptosis 
by means of the cytochrome c release and cell-cycle regu-
lation. 

Cancer progression and cell motility regulated by galectin-3 
interacts with carbohydrate recognition independent manner 
As mentioned in the introduction, galectin-3 has many roles in 
various cancers, such as splicing (65), cell proliferation (66), 
regulation of the cell cycle (26), angiogenesis (33), tumori-
genesis (67), and cancer metastasis (68). It has also been 
demonstrated to be highly expressed in various primary and 
metastatic tumors (69) associated with increased cancer progres-
sion, cell motility, and metastasis (4, 70). Actually, galectin-3 
binding with transcription factor (TF) in the nucleus by means 
of the following signaling pathway, such as Wnt, Ras, or MEK, 
as followed various cancer progression (1, 4). In this part, we 
showed that the role of galectin-3 in cancer progression and 
cell motility with regulation of gene transcription focuses on 
our galectin-3-related story. 

Galectin-3 and Fascin-1: For the cancer progression and cell 
motility with galectin-3, we focus on motility-related genes, 
among which fascin-1, an actin-bundling protein, is located 

along the entire length of filopodia in cells (71, 72). Because 
(a) a highly expressed fascin-1 was reported in various cancers 
including gastric, lung, and esophagus cancers (73-75). (b) 
Increased fascin-1 induces membrane protrusions and increases 
cancer cell motility (76). (c) Depletion of fascin-1 leads to a 
substantially reduced number of filopodia and overexpression 
of fascin-1, significantly increasing cell migration (74, 77, 78). 
Especially, fascin-1 expression is regulated by the Wnt-signaling 
pathway. As previously reported, galectin-3 was also reported 
to interact with GSK-3b and b-catenin which is regulate Wnt 
signaling (79). Therefore, galectin-3 regulates b-catenin nuclear 
accumulation via strongly interacting with GSK-3b and the 
binding of b-catenin/TCF-4 to promoter region of fascin-1 (Fig. 
2) (35). Those studies propose that galectin-3 is involved in 
gastric-cancer metastasis and a critical therapeutic target for 
the cancer prevention. 

Galectin-3 and Protease-activated receptor-1 (PAR-1), Matrix 
Metalloprotease (MMP)-1: PAR-1, a cell-surface receptor, is a 
member of the family of transmembrane G-protein-coupled 
receptors (80). Activated PAR-1 is initiated by cleavage at its N 
terminus exodomain between Arg41 and Ser42, and auto- 
phosphorylates to trigger amplification of downstream signaling 
by proteases (80-83), such as thrombin or MMP-1 derived from 
stroma (84). PAR-1 and MMP-1 were related in cancer progres-
sion and cell motility. Interestingly, up-regulation of PAR-1 
and MMP-1 via c-Jun and Fra-1 over-expression also followed, 
AP-1 complex, as a c-Jun and Fra-1, were direct interaction of 
galectin-3 (Fig. 2). It was previously reported that galectin-3 
regulates MUC2 expression via interaction with AP-1, leading 
to its activation, and the site of formation of complexes was 
hypothesized to be AP-1 on the MUC2 promoter (85). Those 
results also support about galectin-3 regulates cancer progres-
sion and motility.

Galectin-3 and Neogenin-1: Neogenin-1 is a transmembrane 
receptor, as a member of immunoglobulin superfamily (86). 
Although neogenin-1 has significant sequence similarity (50% 
amino-acid identity) with the tumor suppressor molecule 
deleted in colon cancer (DCC) (86), but the expression is 
increased in gastric cancer patients (87). Also, neogenin-1 is 
enhanced in cancer proliferation and cell motility (87). 
Actually, expression of neogenin-1 is regulated by heat shock 
factor-1 (HSF-1). Moreover, galectin-3 promotes gastric-cancer 
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Fig. 2. Schematic model of mechanism of galectin-3 in cancer progression and metastasis. Galectin-3 bound various transcription factors, 
such as AP-1, HSF-1, C/EBP, and TCF4/LEF1, and regulates cancer progression and cell motility.

cell motility by means of up-regulation of neogenin-1 expres-
sion by means of the induced phosphorylation of ROCK1(87). 
Additionally, galectin-3 induced accumulation of HSF-1 in 
nuclei by means of direct binding (Fig. 2). Those data suggest 
that galectin-3 is involved in cancer progression. 

Galectin-3 and Hyaluronan-mediated motility receptor (HMMR): 
At last, HMMR binds with hyaluronan on the cell surface, 
where it activates a signal-transduction cascade causing intra-
cellular protein tyrosine phosphorylation (88, 89). In addition, 
HMMR interacts with actin filaments, microtubules, and mitotic 
spindle assemblies, necessary for the organization of the 
cytoskeletal network (88, 90-92). These HMMRs are regulated 
by interaction between the transcriptional factor CCAAT/ 
enhancer-binding protein b (C/EBPb) and galectin-3 (36). Also, 
C/EBPb is regulated by galectin-3BP (galectin-3 binding protein) 
and promotes tumor progression in various cancers (Fig. 2) 
(93-95). These data mean galectin-3 binds with transcription 
factor in nuclei and regulates cancer progression and meta-
stasis.

Senescence regulated by galectin-3 interacts with 
carbohydrate recognition independent manner
By means of the aberrant activation of oncogenes, such as Ras 
and Myc, or excessive mitogenic signals, can enhance 
senescence by means of two different pathways, p14ARF/p53/p21 
or p16INK4A/pRB (96). However, galectin-3 knock-out (KO) 
mouse embryo fibroblasts (MEF) and silenced galectin-3 
gastric-cancer cells showed that galectin-3 relies on p27KIP1, 
not p21wAF1/CIP1, to regulate premature senescence without 
oncogenic stress (97). Actually, the N-terminal of galectin-3 
(amino-acid residues 1–110), bound with Rb, E2F1, as a 
transcription factor of SKP2, was released from Rb and 
initiated its transcriptional functions (Fig. 1) (97). Increased 

SKP2 regulates p27KIP1 degradation. Based on the research, 
galectin-3 prevents premature senescence by means of inter-
action and phosphorylation of Rb and consequent regulation 
of SKP2 and p27KIP1 expression. Moreover, galectin-3 bound to 
human Telomerase Reverse Transcriptase (hTERT) is an impor-
tant factor of tumorigenesis and senescence (98). Especially, 
hTERT plays an important role in the regulation of telomerase 
activity in cell division, which is responsible for immortalized 
cell growth. The hTERT was binding with the N-terminal of 
galectin-3 (amino-acid residues 1–62) and increased telomeric 
activity (Fig. 1) (98). This evidence will show that galectin-3 
regulates cellular senescence by means of the related genes 
interaction.

Cancer stemness regulated by galectin-3 interacts with 
carbohydrate recognition independent manner
Cancer Stem Cells (CSCs) are a malignant and aggressive 
cancer phenotype and have been increasingly studied over the 
last decade. These cells are derived from more differentiated 
cancer cells, potentially acquiring self-renewal properties and 
the ability to undergo epithelial-mesenchymal metastasis (EMT). 
Recently, galectin-3 expression increased in tumor sphere 
formation in cancer cells, together with stem-cell markers 
Oct4, Sox2, Nanog, CD133, and CXCR4 (99). Those mean 
galectin-3 is involved in the stemness of cancer cells. Especially, 
galectin-3 binds with EGF and bFGF (99) as a component of 
stem-cell culture medium and regulates KLF4 expression with 
miRNA-152 (100). These results support that galectin-3 is 
involved in cancer stemness. Also, galectin-3 supports stemness 
by signaling pathway regulation. Galectin-3 was essential for 
cluster formation using v3 integrin and KRAS to activate the 
NF-kB pathway and stemness (101). Also, the Wnt, Notch, and 
SHH signaling pathways can help CSCs properties from 
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normal stem cells. Among the signaling pathways, the Notch 1 
intra-cellular domain (N1ICD) interacts with CRD of galectin-3 
(amino-acid residues 111-250) (Fig. 1) in the cytoplasm of 
ovarian cancer cells (55). Moreover, galectin-3 is interaction 
with -catenin, as a component Wnt signaling pathway, in the 
cytoplasm and help to nuclear accumulation in the gastric 
cancer cells (35, 63). The above results suggest that galectin-3 
regulates cancer stemness by means of the various interaction 
molecules, not only carbohydrates. 

PERSPECTIVES: GALECTIN-3 IS A POTENTIAL 
THERAPEUTIC TARGET FOR CANCER PROGRESSION

Among current research on the role of galectin-3, the 
prognosis value of cancer patients still needs to be discussed 
(5, 102). Nevertheless, the expression of galectin-3 was proved 
to be a useful parameter for the diagnosis and/or prognosis of 
various cancers. (21, 38, 103). Therefore, many researchers 
have attempted to develop new approaches for the diagnosis 
and treatment of cancer by galectin-3 targeting. First, trans-
fected galectin-3 antisense cDNA decreases in the malignant 
phenotype of thyroid gland cancer cells (104). Numerous 
studies have focused on the galectin-3 targeting inhibitors, 
including peptide antagonists (105) and galactose-based inhibitors 
(106, 107). Also, in addition to these synthetic molecules, a 
natural product, pectin, has emerged as a good source for 
generating high-affinity galectin-3 inhibitors with low toxicity. 
Recently, a wide range of sub-molecular inhibitors have been 
considered (108). Among these, a new kind of galectin-3 
inhibitor, which contains only one residue of sugar (109) that 
constitutes membrane permeability and oral available powerful 
galectin-3 inhibitor has been developed.

CONCLUSION

Highly expressed galectin-3 is detected in various cancers and 
tissues, and is involved in many biological processes, like a 
cell proliferation, adhesion, anti- or pro-apoptosis, cancer 
progression, and metastasis. Therefore, galectin-3 is enhanced 
in cancer progression and metastasis by means of different 
mechanisms. Also, the biological function of galectin-3 were 
attributed to each carbohydrate-binding activity. However, 
many articles showed that galectin-3 interacts with many 
molecules by non-carbohydrate binding. In this review, we 
focus on the regulation mechanism with nucleus and cyto-
plasmic shuttling and the role of nuclear galectin-3 in cancer 
progression. Especially, galectin-3 has an NLS and NES; however, 
galectin-3 mutation also helps the galectin-3 shuttling nucleus 
and cytosol. As follows, galectin-3 has many functions in each 
location. Additionally, galectin-3 is involved in cancer progres-
sion and metastasis by means of the binding with transcription 
factor, such as AP-1 complex (c-Jun/Fra-1), HSF-1, C/EBP, and 
TCF4/LEF1. Also, recently many articles supported about multi- 
function of galectin-3 in various cancers and other diseases. 

Those increased understanding evidences give to the galectin-3 
expression or activity regulation mechanism for therapeutic 
purposes. Given these results, we propose that galectin-3 is a 
core protein in cancer progression and metastasis. In addition, 
the function of galectin-3 and the mechanisms by which it can 
be regulated should be understood in detail.

ACKNOWLEDGEMENTS

This work was supported by from the National Research  
Foundation (NRF) of Korea grants, funded by the Korean  
government (NRF-2017R1C1B2005265, NRF-2017R1A2B200 
6238, NRF-2019R1A2C2089237), the Bio & Medical Technology
Development Program, MSIP (NRF-2015M3A9B6073835),  
KBRI basic research program through Korea Brain Research 
Institute funded by Ministry of Science and ICT(20-BR-03-02), 
and the International Research & Development Program of 
the NRF, funded by the Ministry of Education, Science and  
Technology (MEST) of Korea (NRF-2016K1A3A1A47921595).

CONFLICTS OF INTEREST

The authors have no conflicting interests.

REFERENCES

1. Dumic J, Dabelic S and Flogel M (2006) Galectin-3: an 
open-ended story. Biochim Biophys Acta 1760, 616- 
635

2. Leffler H, Carlsson S, Hedlund M, Qian Y and Poirier F 
(2002) Introduction to galectins. Glycoconj J 19, 433-440

3. Drickamer K and Fadden AJ (2002) Genomic analysis of 
C-type lectins. Biochem Soc Symp 69, 59-72

4. Liu FT and Rabinovich GA (2005) Galectins as modu-
lators of tumour progression. Nat Rev Cancer 5, 29-41

5. Fortuna-Costa A, Gomes AM, Kozlowski EO, Stelling 
MP and Pavao MS (2014) Extracellular galectin-3 in 
tumor progression and metastasis. Front Oncol 4, 138

6. Hirabayashi J and Kasai K (1993) The family of metazoan 
metal-independent beta-galactoside-binding lectins: struc-
ture, function and molecular evolution. Glycobiology 3, 
297-304

7. Johannes L, Jacob R and Leffler H (2018) Galectins at a 
glance. J Cell Sci 131

8. Argueso P and Panjwani N (2011) Focus on molecules: 
galectin-3. Exp Eye Res 92, 2-3

9. Ruvolo PP (2016) Galectin 3 as a guardian of the tumor 
microenvironment. Biochim Biophys Acta 1863, 427-437

10. Kadrofske MM, Openo KP and Wang JL (1998) The 
human LGALS3 (galectin-3) gene: determination of the 
gene structure and functional characterization of the 
promoter. Arch Biochem Biophys 349, 7-20

11. Wang L and Guo XL (2016) Molecular regulation of 
galectin-3 expression and therapeutic implication in cancer 
progression. Biomed Pharmacother 78, 165-171

12. Krzeslak A and Lipinska A (2004) Galectin-3 as a 
multifunctional protein. Cell Mol Biol Lett 9, 305-328



The role of nuclear galectin-3 on cancer progression
Seok-Jun Kim and Kyung-Hee Chun

178 BMB Reports http://bmbreports.org

13. Raimond J, Zimonjic DB, Mignon C et al (1997) Mapping 
of the galectin-3 gene (LGALS3) to human chromosome 
14 at region 14q21-22. Mamm Genome 8, 706-707

14. Hughes RC (1999) Secretion of the galectin family of 
mammalian carbohydrate-binding proteins. Biochim Bio-
phys Acta 1473, 172-185

15. Yu F, Finley RL Jr, Raz A and Kim HR (2002) Galectin-3 
translocates to the perinuclear membranes and inhibits 
cytochrome c release from the mitochondria. A role for 
synexin in galectin-3 translocation. J Biol Chem 277, 
15819-15827

16. van den Brule F, Califice S and Castronovo V (2002) 
Expression of galectins in cancer: a critical review. 
Glycoconj J 19, 537-542

17. Ochieng J, Furtak V and Lukyanov P (2002) Extracellular 
functions of galectin-3. Glycoconj J 19, 527-535

18. Inohara H and Raz A (1994) Identification of human 
melanoma cellular and secreted ligands for galectin-3. 
Biochem Biophys Res Commun 201, 1366-1375

19. Yang RY, Rabinovich GA and Liu FT (2008) Galectins: 
structure, function and therapeutic potential. Expert Rev 
Mol Med 10, e17

20. Haudek KC, Spronk KJ, Voss PG, Patterson RJ, Wang JL 
and Arnoys EJ (2010) Dynamics of galectin-3 in the 
nucleus and cytoplasm. Biochim Biophys Acta 1800, 
181-189

21. Thijssen VL, Heusschen R, Caers J and Griffioen AW 
(2015) Galectin expression in cancer diagnosis and 
prognosis: A systematic review. Biochim Biophys Acta 
1855, 235-247

22. Ebrahim AH, Alalawi Z, Mirandola L et al (2014) 
Galectins in cancer: carcinogenesis, diagnosis and 
therapy. Ann Transl Med 2, 88

23. Takenaka Y, Inohara H, Yoshii T et al (2003) Malignant 
transformation of thyroid follicular cells by galectin-3. 
Cancer Lett 195, 111-119

24. Markowska AI, Jefferies KC and Panjwani N (2011) 
Galectin-3 protein modulates cell surface expression and 
activation of vascular endothelial growth factor receptor 
2 in human endothelial cells. J Biol Chem 286, 29913- 
29921

25. Hughes RC (2001) Galectins as modulators of cell 
adhesion. Biochimie 83, 667-676

26. Kim HR, Lin HM, Biliran H and Raz A (1999) Cell cycle 
arrest and inhibition of anoikis by galectin-3 in human 
breast epithelial cells. Cancer Res 59, 4148-4154

27. Zhao Q, Barclay M, Hilkens J et al (2010) Interaction 
between circulating galectin-3 and cancer-associated 
MUC1 enhances tumour cell homotypic aggregation 
and prevents anoikis. Mol Cancer 9, 154

28. Yang RY, Hsu DK and Liu FT (1996) Expression of 
galectin-3 modulates T-cell growth and apoptosis. Proc 
Natl Acad Sci U S A 93, 6737-6742

29. Harazono Y, Kho DH, Balan V et al (2014) Galectin-3 
leads to attenuation of apoptosis through Bax hetero-
dimerization in human thyroid carcinoma cells. Oncotarget 
5, 9992-10001

30. Nakahara S, Oka N and Raz A (2005) On the role of 
galectin-3 in cancer apoptosis. Apoptosis 10, 267-275

31. Nangia-Makker P, Wang Y, Raz T et al (2010) Cleavage 

of galectin-3 by matrix metalloproteases induces angio-
genesis in breast cancer. Int J Cancer 127, 2530-2541

32. Wang LF, Liu YS, Yang  B et al (2018) The extracellular 
matrix protein mindin attenuates colon cancer progres-
sion by blocking angiogenesis via Egr-1-mediated regulation. 
Oncogene 37, 601-615

33. Nangia-Makker P, Honjo Y, Sarvis R et al (2000) 
Galectin-3 induces endothelial cell morphogenesis and 
angiogenesis. Am J Pathol 156, 899-909

34. Kim SJ, Shin JY, Lee KD et al (2011) Galectin-3 facilitates 
cell motility in gastric cancer by up-regulating 
protease-activated receptor-1 (PAR-1) and matrix metallo-
proteinase-1 (MMP-1). PLoS One 6, e25103

35. Kim SJ, Choi IJ, Cheong TC et al (2010) Galectin-3 
increases gastric cancer cell motility by up-regulating 
fascin-1 expression. Gastroenterology 138, 1035-1045 
e1031-1032

36. Kang HG, Kim WJ, Kang HG, Chun KH and Kim SJ 
(2020) Galectin-3 interacts with C/EBPbeta and upregu-
lates hyaluronan-mediated motility receptor expression 
in gastric cancer. Mol Cancer Res 18, 403-413

37. Dong R, Zhang M, Hu Q et al (2018) Galectin-3 as a 
novel biomarker for disease diagnosis and a target for 
therapy (Review). Int J Mol Med 41, 599-614

38. Califice S, Castronovo V and Van Den Brule F (2004) 
Galectin-3 and cancer (Review). Int J Oncol 25, 983-992

39. Baldus SE, Zirbes TK, Weingarten M et al (2000) 
Increased galectin-3 expression in gastric cancer: 
correlations with histopathological subtypes, galactosylated 
antigens and tumor cell proliferation. Tumour Biol 21, 
258-266

40. Volante M, Bozzalla-Cassione F, Orlandi F and Papotti 
M (2004) Diagnostic role of galectin-3 in follicular 
thyroid tumors. Virchows Arch 444, 309-312

41. Gudowska M, Gruszewska E, Cylwik B et al (2015) 
Galectin-3 Concentration in Liver Diseases. Ann Clin 
Lab Sci 45, 669-673

42. Inufusa H, Nakamura M, Adachi T et al (2001) Role of 
galectin-3 in adenocarcinoma liver metastasis. Int J 
Oncol 19, 913-919

43. Honjo Y, Inohara H, Akahani S et al (2000) Expression 
of cytoplasmic galectin-3 as a prognostic marker in 
tongue carcinoma. Clin Cancer Res 6, 4635-4640

44. Shimamura T, Sakamoto M, Ino Y et al (2002) Clinico-
pathological significance of galectin-3 expression in 
ductal adenocarcinoma of the pancreas. Clin Cancer Res 
8, 2570-2575

45. Sciacchitano S, Lavra L, Morgante A et al (2018) 
Galectin-3: One Molecule for an Alphabet of Diseases, 
from A to Z. Int J Mol Sci 19, pii: E379

46. Castronovo V, Van Den Brule FA, Jackers P et al (1996) 
Decreased expression of galectin-3 is associated with 
progression of human breast cancer. J Pathol 179, 43-48

47. Honjo Y, Nangia-Makker P, Inohara H and Raz A (2001) 
Down-regulation of galectin-3 suppresses tumorigenicity 
of human breast carcinoma cells. Clin Cancer Res 7, 
661-668

48. Pacis RA, Pilat MJ, Pienta KJ et al (2000) Decreased 
galectin-3 expression in prostate cancer. Prostate 44, 
118-123



 The role of nuclear galectin-3 on cancer progression
Seok-Jun Kim and Kyung-Hee Chun

179http://bmbreports.org BMB Reports

49. Brustmann H, Riss D and Naude S (2003) Galectin-3 
expression in normal, hyperplastic, and neoplastic endo-
metrial tissues. Pathol Res Pract 199, 151-158

50. Shimonishi T, Miyazaki K, Kono N et al (2001) Expres-
sion of endogenous galectin-1 and galectin-3 in intrahepatic 
cholangiocarcinoma. Hum Pathol 32, 302-310

51. van den Brule FA, Waltregny D, Liu FT and Castronovo 
V (2000) Alteration of the cytoplasmic/nuclear expres-
sion pattern of galectin-3 correlates with prostate car-
cinoma progression. Int J Cancer 89, 361-367

52. Jin L, Riss D, Ruebel K et al (2005) Galectin-3 Expression 
in Functioning and Silent ACTH-Producing Adenomas. 
Endocr Pathol 16, 107-114

53. Shimura T, Takenaka Y, Fukumori T et al (2005) Implica-
tion of galectin-3 in Wnt signaling. Cancer Res 65, 
3535-3537

54. Itoh K, Brott BK, Bae GU, Ratcliffe MJ and Sokol SY 
(2005) Nuclear localization is required for Dishevelled 
function in Wnt/beta-catenin signaling. J Biol 4, 3

55. Kang HG, Kim DH, Kim SJ et al (2016) Galectin-3 
supports stemness in ovarian cancer stem cells by 
activation of the Notch1 intracellular domain. Oncotarget 
7, 68229-68241

56. Pikarsky E, Porat RM, Stein I et al (2004) NF-kappaB 
functions as a tumour promoter in inflammation-associated 
cancer. Nature 431, 461-466

57. Davidson PJ, Davis MJ, Patterson RJ, Ripoche MA, 
Poirier F and Wang JL (2002) Shuttling of galectin-3 
between the nucleus and cytoplasm. Glycobiology 12, 
329-337

58. Arnoys EJ, Ackerman CM and Wang JL (2015) Nucleo-
cytoplasmic shuttling of galectin-3. Methods Mol Biol 
1207, 465-483

59. Nakahara S, Oka N, Wang Y, Hogan V, Inohara H and 
Raz A (2006) Characterization of the nuclear import 
pathways of galectin-3. Cancer Res 66, 9995-10006

60. Nakahara S, Hogan V, Inohara H and Raz A (2006) 
Importin-mediated nuclear translocation of galectin-3. J 
Biol Chem 281, 39649-39659

61. Davidson PJ, Li SY, Lohse AG et al (2006) Transport of 
galectin-3 between the nucleus and cytoplasm. I. 
Conditions and signals for nuclear import. Glycobiology 
16, 602-611

62. Li SY, Davidson PJ, Lin NY, Patterson RJ, Wang JL and 
Arnoys EJ (2006) Transport of galectin-3 between the 
nucleus and cytoplasm. II. Identification of the signal for 
nuclear export. Glycobiology 16, 612-622

63. Kim SJ, Shin JY, Cheong TC et al (2011) Galectin-3 
germline variant at position 191 enhances nuclear 
accumulation and activation of beta-catenin in gastric 
cancer. Clin Exp Metastasis 28, 743-750

64. Balan V, Nangia-Makker P, Schwartz AG et al (2008) 
Racial disparity in breast cancer and functional germ 
line mutation in galectin-3 (rs4644): a pilot study. Cancer 
Res 68, 10045-10050

65. Dagher SF, Wang JL and Patterson RJ (1995) Identifi-
cation of galectin-3 as a factor in pre-mRNA splicing. 
Proc Natl Acad Sci U S A 92, 1213-1217

66. Inohara H, Akahani S and Raz A (1998) Galectin-3 
stimulates cell proliferation. Exp Cell Res 245, 294-302

67. Bresalier RS, Mazurek N, Sternberg LR et al (1998) 
Metastasis of human colon cancer is altered by 
modifying expression of the beta-galactoside-binding 
protein galectin 3. Gastroenterology 115, 287-296

68. Takenaka Y, Fukumori T and Raz A (2004) Galectin-3 
and metastasis. Glycoconj J 19, 543-549

69. Raz A, Zhu DG, Hogan V et al (1990) Evidence for the 
role of 34-kDa galactoside-binding lectin in transforma-
tion and metastasis. Int J Cancer 46, 871-877

70. Hood JD and Cheresh DA (2002) Role of integrins in 
cell invasion and migration. Nat Rev Cancer 2, 91-100

71. Yoder BJ, Tso E, Skacel M et al (2005) The expression of 
fascin, an actin-bundling motility protein, correlates with 
hormone receptor-negative breast cancer and a more 
aggressive clinical course. Clin Cancer Res 11, 186-192

72. Kureishy N, Sapountzi V, Prag S, Anilkumar N and 
Adams JC (2002) Fascins, and their roles in cell structure 
and function. Bioessays 24, 350-361

73. Hashimoto Y, Ito T, Inoue H et al (2005) Prognostic 
significance of fascin overexpression in human esophageal 
squamous cell carcinoma. Clin Cancer Res 11, 2597- 
2605

74. Jawhari AU, Buda A, Jenkins M et al (2003) Fascin, an 
actin-bundling protein, modulates colonic epithelial cell 
invasiveness and differentiation in vitro. Am J Pathol 
162, 69-80

75. Grothey A, Hashizume R, Ji H et al (2000) C-erbB-2/ 
HER-2 upregulates fascin, an actin-bundling protein 
associated with cell motility, in human breast cancer cell 
lines. Oncogene 19, 4864-4875

76. Hashimoto Y, Shimada Y, Kawamura J, Yamasaki S and 
Imamura M (2004) The prognostic relevance of fascin 
expression in human gastric carcinoma. Oncology 67, 
262-270

77. Yamashiro S, Yamakita Y, Ono S and Matsumura F 
(1998) Fascin, an actin-bundling protein, induces 
membrane protrusions and increases cell motility of 
epithelial cells. Mol Biol Cell 9, 993-1006

78. Shonukan O, Bagayogo I, McCrea P, Chao M and 
Hempstead B (2003) Neurotrophin-induced melanoma 
cell migration is mediated through the actin-bundling 
protein fascin. Oncogene 22, 3616-3623

79. Shimura T, Takenaka Y, Tsutsumi S, Hogan V, Kikuchi A 
and Raz A (2004) Galectin-3, a novel binding partner of 
beta-catenin. Cancer Res 64, 6363-6367

80. Macfarlane SR, Seatter MJ, Kanke T, Hunter GD and 
Plevin R (2001) Proteinase-activated receptors. Pharmacol 
Rev 53, 245-282

81. Tellez C and Bar-Eli M (2003) Role and regulation of the 
thrombin receptor (PAR-1) in human melanoma. Oncogene 
22, 3130-3137

82. Arora P, Ricks TK and Trejo J (2007) Protease-activated 
receptor signalling, endocytic sorting and dysregulation 
in cancer. J Cell Sci 120, 921-928

83. Pei D (2005) Matrix metalloproteinases target protease- 
activated receptors on the tumor cell surface. Cancer 
Cell 7, 207-208

84. Blackburn JS, Liu I, Coon CI and Brinckerhoff CE (2009) 
A matrix metalloproteinase-1/protease activated receptor-1 
signaling axis promotes melanoma invasion and metastasis. 



The role of nuclear galectin-3 on cancer progression
Seok-Jun Kim and Kyung-Hee Chun

180 BMB Reports http://bmbreports.org

Oncogene 28, 4237-4248
85. Song S, Byrd JC, Mazurek N, Liu K, Koo JS and Bresalier 

RS (2005) Galectin-3 modulates MUC2 mucin expres-
sion in human colon cancer cells at the level of trans-
cription via AP-1 activation. Gastroenterology 129, 1581- 
1591

86. Wilson NH and Key B (2007) Neogenin: one receptor, 
many functions. Int J Biochem Cell Biol 39, 874-878

87. Kim SJ, Wang YG, Lee HW et al (2014) Up-regulation of 
neogenin-1 increases cell proliferation and motility in 
gastric cancer. Oncotarget 5, 3386-3398

88. Li J, Shima H, Nishizawa H et al (2018) Phosphorylation 
of BACH1 switches its function from transcription factor 
to mitotic chromosome regulator and promotes its 
interaction with HMMR. Biochem J 475, 981-1002

89. Yeh MH, Tzeng YJ, Fu TY et al (2018) Extracellular 
Matrix-receptor Interaction Signaling Genes Associated 
with Inferior Breast Cancer Survival. Anticancer Res 38, 
4593-4605

90. Casini P, Nardi I and Ori M (2010) RHAMM mRNA 
expression in proliferating and migrating cells of the 
developing central nervous system. Gene Expr Patterns 
10, 93-97

91. Bahrami SB, Tolg C, Peart T et al (2017) Receptor for 
hyaluronan mediated motility (RHAMM/HMMR) is a 
novel target for promoting subcutaneous adipogenesis. 
Integr Biol (Camb) 9, 223-237

92. Connell M, Chen H, Jiang J et al (2017) HMMR acts in 
the PLK1-dependent spindle positioning pathway and 
supports neural development. Elife 6, pii: e28672

93. Silverman AM, Nakata R, Shimada H, Sposto R and 
DeClerck YA (2012) A galectin-3-dependent pathway 
upregulates interleukin-6 in the microenvironment of 
human neuroblastoma. Cancer Res 72, 2228-2238

94. Regalo G, Forster S, Resende C et al (2016) C/EBPbeta 
regulates homeostatic and oncogenic gastric cell 
proliferation. J Mol Med (Berl) 94, 1385-1395

95. Vaught JB (2006) Biorepository and biospecimen science: 
a new focus for CEBP. Cancer Epidemiol Biomarkers 
Prev 15, 1572-1573

96. Kuilman T, Michaloglou C, Mooi WJ and Peeper DS 
(2010) The essence of senescence. Genes Dev 24, 2463-2479

97. Kim SJ, Lee HW, Gu Kang H et al (2014) Ablation of 
galectin-3 induces p27(KIP1)-dependent premature sene-
scence without oncogenic stress. Cell Death Differ 21, 

1769-1779
98. La SH, Kim SJ, Kang HG, Lee HW and Chun KH (2016) 

Ablation of human telomerase reverse transcriptase 
(hTERT) induces cellular senescence in gastric cancer 
through a galectin-3 dependent mechanism. Oncotarget 
7, 57117-57130

99. Nangia-Makker P, Hogan V and Raz A (2018) Galectin-3 
and cancer stemness. Glycobiology 28, 172-181

100. Ma J, Yao Y, Wang P et al (2014) MiR-152 functions as a 
tumor suppressor in glioblastoma stem cells by targeting 
Kruppel-like factor 4. Cancer Lett 355, 85-95

101. Seguin L, Kato S, Franovic A et al (2014) An integrin 
beta(3)-KRAS-RalB complex drives tumour stemness and 
resistance to EGFR inhibition. Nat Cell Biol 16, 457-468

102. Shekhar MP, Nangia-Makker P, Tait L, Miller F and Raz 
A (2004) Alterations in galectin-3 expression and distribu-
tion correlate with breast cancer progression: functional 
analysis of galectin-3 in breast epithelial-endothelial 
interactions. Am J Pathol 165, 1931-1941

103. El Gendy H, Madkour B, Abdelaty S et al (2014) 
Galectin 3 for the diagnosis of bladder cancer. Arab J 
Urol 12, 178-181

104. Yoshii T, Inohara H, Takenaka Y et al (2001) Galectin-3 
maintains the transformed phenotype of thyroid papillary 
carcinoma cells. Int J Oncol 18, 787-792

105. Nangia-Makker P, Balan V and Raz A (2008) Regulation 
of tumor progression by extracellular galectin-3. Cancer 
Microenviron 1, 43-51

106. Chen WS, Cao Z, Leffler H, Nilsson UJ and Panjwani N 
(2017) Galectin-3 Inhibition by a Small-Molecule 
Inhibitor Reduces Both Pathological Corneal Neovasculari-
zation and Fibrosis. Invest. Ophthalmol Vis Sci 58, 9-20

107. Glinskii OV, Sud S, Mossine VV et al (2012) Inhibition 
of prostate cancer bone metastasis by synthetic TF 
antigen mimic/galectin-3 inhibitor lactulose-L-leucine. 
Neoplasia 14, 65-73

108. Campo VL, Marchiori MF, Rodrigues LC and Dias- 
Baruffi M (2016) Synthetic glycoconjugates inhibitors of 
tumor-related galectin-3: an update. Glycoconj J 33, 
853-876

109. Zetterberg FR, Peterson K, Johnsson RE et al (2018) 
Monosaccharide Derivatives with Low-Nanomolar Lectin 
Affinity and High Selectivity Based on Combined 
Fluorine-Amide, Phenyl-Arginine, Sulfur-pi, and Halogen 
Bond Interactions. Chem Med Chem 13, 133-137


