• Title/Summary/Keyword: induction heat

Search Result 464, Processing Time 0.037 seconds

Effects of Inductor Shape in Steel Forming Process with High Frequency Induction Heating (유도가열을 이용한 강판성형공정에서 유도코일 형상의 효과)

  • Yang, Young-Soo;Bae, Kang-Yul;Shin, Hee-Yun
    • Journal of Welding and Joining
    • /
    • v.26 no.4
    • /
    • pp.66-72
    • /
    • 2008
  • Because of high intensity and easy controllability of the heat source, high frequency induction heating has been concerned and studied for the steel forming process in the ship building industry. However, the heating and forming characteristics have to be further properly modelled and analyzed for the process to be utilized with its optimal working parameters. In this study, a modelling with thermo-elasto-plastic analysis is performed using the FEM to study heat flow and deformation of the steel plate during the forming process with the electro-magnetic induction heating. The numerical model is then used to study the effect of the inductor shape on the magnitude of angular deformation of the plate during the forming process. It is revealed that the square shape of inductor induces the largest deformation among the rectangular inductors.

Effect of Radiation Heat Transfer on the Control of Temperature Gradient in the Induction Heating Furnace for Growing Single Crystals (전자기 유도가열식 단결정 성장로의 온도 구배제어에 있어 복사열 전달의 효과)

  • Park, Tae-Yong;Shin, Yun-Ji;Ha, Minh-Tan;Bae, Si-Young;Lim, Young-Soo;Jeong, Seong-Min
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.522-527
    • /
    • 2019
  • In order to fabricate high-quality SiC substrates for power electronic devices, various single crystal growing methods were prepared. These include the physical vapor transport (PVT) and top seeded solution growth (TSSG) methods. All the suggested SiC growth methods generally use induction-heating furnaces. The temperature distribution in this system can be easily adjusted by changing the hot-zone design. Moreover, precise temperature control in the induction-heating furnace is favorably required to grow a high-quality crystal. Therefore, in this study, we analyzed the heat transfer in these furnaces to grow SiC crystals. As the growth temperature of SiC crystals is very high, we evaluated the effect of radiation heat transfer on the temperature distribution in induction-heating furnaces. Based on our simulation results, a heat transfer strategy that controls the radiation heat transfer was suggested to obtain the optimal temperature distribution in the PVT and TSSG methods.

A Study on Rapid Mold Heating System using High-Frequency Induction Heating (고주파 유도가열을 사용한 급속 금형가열에 관한 연구)

  • Jeong, Hui-Tack;Yun, Jae-Ho;Park, Keun;Kwon, Oh-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.31 no.5
    • /
    • pp.594-600
    • /
    • 2007
  • Rapid mold heating has been recent issue to enable the injection molding of thin-walled parts or micro/nano structures. Induction heating is an efficient way to heat a conductive workpiece by means of high-frequency electric current caused by electromagnetic induction. Because the induction heating is a convenient and efficient way of indirect heating, it has various applications such as heat treatment, brazing, welding, melting, and mold heating. The present study covers an experimental investigation on the rapid heating using the induction heating and rapid cooling using a vortex tube in order to eliminate an excessive cycle time increase. Experiments are performed in the case of a steel cup mold core with various heating and cooling conditions. Temperature is measured during heating and cooling time, from which appropriate mold heating and cooling conditions can be obtained.

Heat Transfer Analysis of Medium-Size Crankshaft during Induction Heating (유도가열시 중형 크랭크샤프트의 열전달 해석)

  • Park, Sang-Chul
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.9
    • /
    • pp.4156-4162
    • /
    • 2013
  • This study was peformed to determine optimum induction heating conditions for a round bar of crankshaft. Four induction heating conditions were proposed and evaluated, employing numerical method, based on electromagnetic and sequential heat transfer analyses, resulting in optimum induction heating conditions which are finally proposed based on peak temperatures at heating zone and minimum temperature gradient through thickness of a round bar after 1 hour induction heating.

Analysis of Induction Heating by Using FEM (유한요소법을 이용한 유도가열 해석)

  • 윤진오;양영수
    • Proceedings of the KWS Conference
    • /
    • 2004.05a
    • /
    • pp.66-68
    • /
    • 2004
  • Induction heating is a process that is accompanied with magnetic and thermal situation. When the high-frequency current flows in the coil, induced eddy current generates heat to conductor. To simulate an induction heating process, the finite element analysis program was developed. A coupling method between the magnetic and thermal routines was developed. In the process of magnetic analysis and thermal analysis, magnetic material properties and thermal material properties depending on temperature are taken into consideration. In this paper, to predict the angular deformation, temperature difference and the shape of heat affected zone were discussed. Also appropriate coil shape for maximum angular deformation were proposed.

  • PDF

Numerical and experimental analysis of temperature distribution in TEFC induction motor (전폐형 유도전동기의 온도분포에 관한 수치 및 실험적 해석)

  • Yun, Myeong-Geun;Go, Sang-Geun;Han, Song-Yeop;Lee, Yang-Su
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.3
    • /
    • pp.457-472
    • /
    • 1997
  • We studied the temperature distribution and heat transfer characteristics of TEFC induction motor with thermal network program for more efficient design and better cooling performance of it. We knew the characteristics and the windage loss of outer cooling fan from fan test experiments. Frame axial and peripheral heat transfer coefficients and endwinding heat transfer coefficient were measured by various model experiments and then, compared with other experimental results. Frame was the main heat transfer surface, load-side and fan-side surface were not thermally symmetric from the heat flux distribution analysis. Steady and unsteady temperature distributions were measured by real motor experiments. From the results, we knew that rotor surface temperature was higher than coil temperature and the hottest spot in the coil was loadside endwinding outside surface. We compared the simulation results with those of real motor test and the two results showed a good agreement.