• Title/Summary/Keyword: inductance profile

Search Result 48, Processing Time 0.029 seconds

Analysis of Force Characteristic in Switched Reluctance Motor According to Electric (전기적인 파라메터 변화에 따른 스위치드 릴럭턴스 전동기의 힘특성 해석)

  • Chun, Yon-Do;Ree, Cheol-Jick;Lee, Taeck-Kie;Lee, Ju
    • Proceedings of the KIEE Conference
    • /
    • 2001.10a
    • /
    • pp.122-124
    • /
    • 2001
  • In this paper, the influence of electrical parameters such as the turn-on and turn-off angle on the torque and force characteristics is investigated for the reduction of the torque ripple which is main source of vibration and noise in switched reluctance motor (SRM). The four different types of the turn-on angle are set to the section of rising inductance profile respectively. The optimum turn-on angle is proposed for the acquisition of the flat current shape minimizing the torque ripple. 2D finite element method (FEM) considering the iron saturation and the actual switching circuit of the SRM drive is applied for the dynamic analysis. The simulation results of phase current and torque are also compared to the experimental results.

  • PDF

Sensorless Control Method of Single-Phase hybrid SRM (단상 하이브리드 SRM의 센서리스 제어기법)

  • Tang, Ying;Zhang, Fengge;Lee, Dong-Hee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2015.11a
    • /
    • pp.213-214
    • /
    • 2015
  • In this paper, a novel method of sensorless control scheme is proposed to apply on a single phase hybrid SRM used in high speed operation. The proposed method utilizes beneficially permanent magnet field whose performance is motor parameter independent to estimate the rotor position. The differential value of back-EMF is used to detect its peak point when there is no current conducting in the winding. Through this approach, the adjustable turn on/off position can be achieved without prior knowledge of inductance profile which is always employed by many sensorless schemes. And this paper may offer an available method to do the sensorless control in hybrid SRM used for high speed running.

  • PDF

Optimum Geometric and Electrical Parameter for minimization Torque Ripple of Switched Reluctance Motor (스위치드 릴럭턴스 전동기의 토오크 리플 저감을 위한 기하학적인 파라미터와 전기적인 파라미터의 최적화)

  • Jung, S.I.;Choi, J.H.;Kim, Y.H.;Kim, S.;Lee, J.;Ju, M.S.;Choi, D.H.
    • Proceedings of the KIEE Conference
    • /
    • 2001.07b
    • /
    • pp.608-610
    • /
    • 2001
  • In this paper, 6/4 Switched Reluctance Motor(SRM) which has simple structure and little switching element is selected basic analysis model. In order to reduce torque ripple causing noise and vibration, we execute optimization of geometric parameters (stator and rotor pole arc) and electrical parameters (turn-on angle and turn-of angle) by means of combining Fletcher-Reeves's Conjugate Directions and Finite Element Method (FEM) considering driving circuits. When considering the switching condition according to inductance profile, torque characteristics is influenced by geometric and electrical parameters importantly. The pole arc and switching angle of the optimum can also obtain the low torque ripple without high currents.

  • PDF

Prediction of Change in Equivalent Circuit Parameters of Transformer Winding Due to Axial Deformation using Sweep Frequency Response Analysis

  • Sathya, M. Arul;Usa, S.
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.983-989
    • /
    • 2015
  • Power transformer is one of the major and key apparatus in electric power system. Monitoring and diagnosis of transformer fault is necessary for improving the life period of transformer. The failures caused by short circuits are one of the causes of transformer outages. The short circuit currents induce excessive forces in the transformer windings which result in winding deformation affecting the mechanical and electrical characteristics of the winding. In the present work, a transformer producing only the radial flux under short circuit is considered. The corresponding axial displacement profile of the windings is computed using Finite Element Method based transient structural analysis and thus obtained displacements are compared with the experimental result. The change in inter disc capacitance and mutual inductance of the deformed windings due to different short circuit currents are computed using Finite Element Method based field analyses and the corresponding Sweep Frequency Responses are computed using the modified electrical equivalent circuit. From the change in the first resonant frequency, the winding movement can be quantified which will be useful for estimating the mechanical withstand capability of the winding for different short circuit currents in the design stage itself.

In-Process Evaluation of Surface Characteristics in Machining

  • Jang, Dong-Young;Hsiao, Alex
    • Tribology and Lubricants
    • /
    • v.11 no.5
    • /
    • pp.99-107
    • /
    • 1995
  • This paper reported research results to develop an algorithm of on-lin evaluation of surface profiles and roughness generated by turning. The developed module consisted of computer simulation of surface profiles using mechanism of cutting mark formation and cutting vibrations, and online measurement of cutting vibrations. The relative cutting vibrations between tool and worpkiece were measured through an inductance pickup at the rate of one sample per rotation of the workpiece. The sampling process was monitored using an encoder to avoid conceling out the phase lag between waves. The digital cutting signals from the Analog-to-Digital converter were transferred to the simulation module of surface profile where the surface profiles were generated. The developed algorithm or surface generation in a hard turning was analyzed through computer simulations to consider the stochastic and dynamic nature of cutting process. Cutting tests were performed using AISI 304 Stainless Steel and carbide inserts in practical range of cutting conditions. Experimental results showed good correlation between the surface profiles and roughness obtained using the developed algorithm and the surface texture measured using a surface profilemeter. The research provided the feasibility to monitor surface characteristics during tribelogical tests considering wear effect on surface texture in machining.

A Study For Characteristic of Forward Converter using Planar Magnetic Components (플레너 자기 소자를 이용한 포워드 컨버터의 특성 연구)

  • Choi, Hyun-Sik;Lee, Jae-Hak;Park, Kyung-Su
    • Journal of the Institute of Electronics Engineers of Korea TE
    • /
    • v.37 no.1
    • /
    • pp.89-98
    • /
    • 2000
  • This paper presented a design technique of planar magnetic components for forward converter. Planar magnetic components are a good solution for high frequency switching-mode power supplies(SMPS). Since these kind of magnetic components have some advantages(low leakage inductance, low profile, low weight, minimum EMI etc.) that improve the SMPS performance, their use is growing in the last years. In this paper, the performance of designed system is verified by simulation and experiment by comparing the system using conventional magnetic components and the system using planar magnetic components.

  • PDF

An Omnidirectional Planar Antenna with Four Stepped L-shape slots (4개의 계단형 L-슬롯 구조를 갖는 전방향성 평면 안테나)

  • Nam, Sung-Soo;Lee, Hong-Min
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.1 no.3
    • /
    • pp.3-8
    • /
    • 2008
  • In this paper, an planar antenna which has omnidirectional radiation pattern in H-plane and low profile is proposed. By adding inductance elements of an ENG shell structure, a capacitance element of an electrically small antenna is easily achieved with impedance matching. An ENG shell structure is consist of a inductive loading structure which has symmetrical four stepped L-shape slots. The simulated result shows, the impedance bandwidth of the proposed antenna is 150MHz (2.5 ~ 2.65GHz). The simulated maximum radiation gain of proposed antenna is 1.12 dBi at center frequency 2.56GHz. Omnidirectional radiation pattern is achieved. The proposed antenna will be applied to wireless lan access point system.

  • PDF

Measurement and Numerical Analysis of Impedance Characteristics of Planar ICP (평판형유도결합플라즈마의 임피던스특성 측정 및 수치해석)

  • Yang, Il-Dong;Lee, Ho-Joon;Whang, Ki-Woong
    • Proceedings of the KIEE Conference
    • /
    • 1994.11a
    • /
    • pp.281-283
    • /
    • 1994
  • The impedance characteristics of planar ICP have been measured and compared with the theoretical results obtained by the field equation. The resistance of the total impedance had a maximum point and the inductance decreased monotonically as the electron density increased from $2.5{\times}10^{10}cm^{-3}$ to $7{\times}10^{11}cm^{-3}$ and the Pressure from 1mT to 50mT. The impedance characteristics were also dependent on the profile of the electron density. The effective collision frequency, ${\nu}_{eff}$ was $9.0{\times}10^6Hz$ at 5mT and $.5{\times}10^7Hz$ at 100mT. The effective collision frequency at 5mT was not so different from that at 100mT and it is doe to the reduction of the discharge channel cross-section at high pressure. The estimated effective collision frequency from the simulation data was of the same order as the measured one.

  • PDF