• Title/Summary/Keyword: inducible resistance

Search Result 88, Processing Time 0.023 seconds

ACY-241, a histone deacetylase 6 inhibitor, suppresses the epithelial-mesenchymal transition in lung cancer cells by downregulating hypoxia-inducible factor-1 alpha

  • Seong-Jun Park;Naeun Lee;Chul-Ho Jeong
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.28 no.1
    • /
    • pp.83-91
    • /
    • 2024
  • Hypoxia-inducible factor-1 alpha (HIF-1α) is a transcription factor activated under hypoxic conditions, and it plays a crucial role in cellular stress regulation. While HIF-1α activity is essential in normal tissues, its presence in the tumor microenvironment represents a significant risk factor as it can induce angiogenesis and confer resistance to anti-cancer drugs, thereby contributing to poor prognoses. Typically, HIF-1α undergoes rapid degradation in normoxic conditions via oxygen-dependent degradation mechanisms. However, certain cancer cells can express HIF-1α even under normoxia. In this study, we observed an inclination toward increased normoxic HIF-1α expression in cancer cell lines exhibiting increased HDAC6 expression, which prompted the hypothesis that HDAC6 may modulate HIF-1α stability in normoxic conditions. To prove this hypothesis, several cancer cells with relatively higher HIF-1α levels under normoxic conditions were treated with ACY-241, a selective HDAC6 inhibitor, and small interfering RNAs for HDAC6 knockdown. Our data revealed a significant reduction in HIF-1α expression upon HDAC6 inhibition. Moreover, the downregulation of HIF-1α under normoxic conditions decreased zinc finger E-box-binding homeobox 1 expression and increased E-cadherin levels in lung cancer H1975 cells, consequently suppressing cell invasion and migration. ACY-241 treatment also demonstrated an inhibitory effect on cell invasion and migration by reducing HIF-1α level. This study confirms that HDAC6 knockdown and ACY-241 treatment effectively decrease HIF-1α expression under normoxia, thereby suppressing the epithelial-mesenchymal transition. These findings highlight the potential of selective HDAC6 inhibition as an innovative therapeutic strategy for lung cancer.

Comparison of Glutathione S-transferase-${\pi}$ Content in Drug-resistant and -sensitive Cancer Cells

  • Hong, Soon-Duck;Lee, Sang-Han
    • Journal of Life Science
    • /
    • v.9 no.1
    • /
    • pp.40-44
    • /
    • 1999
  • Glutathione S-transferase (GST) is a multifunctional protein that catalyzes the catalyzes the conjugation of glutathione with electrophilic compounds. It exists in a variety of isoenzy-matic froms with a wide range of substrate specificity and plays a pivotal role in detoxification of various drugs. In order to elucidate the GST-${\pi}$'s involvement of multidrug resistance (MDR) in drug-resistant tumor cell lines, we determined GST-${\pi}$ content by "1 step sandwich method". Consequently, adriamycin resistant cells of MCF-7 (MCF-7/ADM) have 7-fold increase of GST-${\pi}$ content than that of MCF-7 cells, while its {TEX}$IC_{50}${/TEX} was 116-fold greater than parent cell line. By northrn blotting, we compared whether MCF-7/ADM cells express GST-${\pi}$ mRNA. The GST-${\pi}$ mRNA expression in these cells was not inducible, but constitutive when treated for 24 h with a concentration of 0, 20, 200, and 2000 nM of adriamycin, respectively. Taken together, these results suggest that GST-${\pi}$ may not be directly associated with multidrug resistance in these human cancer cell lines.ell lines.

  • PDF

Staphylococcal methicillin resistance expression under various growth conditions

  • Lee, Yoo-Nik;Ryoung, Poo-Ha;Lee, Young-Ik
    • Journal of Microbiology
    • /
    • v.35 no.2
    • /
    • pp.103-108
    • /
    • 1997
  • To improve the detection of methicillin resistant staphylococci, lowered incubation temperature (30.deg.) and inclusion of sodium chloride in media have been empirically recommended. However, in this study, we found that sodium chloride in Peptone-Yeast Extract-K$\_$2/HPO$\_$4/ (PYK) medium decreased methicillin minimum inhibitory concentrations. Divalent cations were shown to restore the expression of staphylococcal methicillin resistance. However, when it was determined by efficiency of plating, sodium chloride increased methicillin resistance expression on agar medium in which higher divalent cations were contained in the agar medium. The decrease of minimum inhibitory concentrations at 30.deg.C by sodium chloride occurred in Brain Heart Infusion but did not occur in other media investigated. Interestingly, both PYK and Brain Heart Infusion media had peptone, which contain cholic acids having detergent activities. Inclusion of sodium chloride in PYK caused a higher rate of autolysis. Penicillin binding protein 2a that has a low affinity to beta-lactam antibiotics, was highly inducible in methicillin resistant Staphylococcus epidermidis strains. In this study, we found that autolysins that are activated by the sodium chloride decreased the minimum inhibitory concentration at 30.deg.C, and peptidoglycan is weakened due to the presence of methicillin. Peptone in the media may aggravate the fragile cells. However, stabilization due to the presence of divalent cations and production of penicilin binding protein 2a increase the survival of staphylococci.

  • PDF

Characterization of a Drought-Tolerance Gene, BrDSR, in Chinese Cabbage (배추의 건조 저항성 유전자, BrDSR의 기능 검정)

  • Yu, Jae-Gyeong;Lee, Gi-Ho;Park, Young-Doo
    • Horticultural Science & Technology
    • /
    • v.34 no.1
    • /
    • pp.102-111
    • /
    • 2016
  • The goal of this study was to characterize the BrDSR (Drought Stress Resistance in B. rapa) gene and to identify the expression network of drought-inducible genes in Chinese cabbage under drought stress. Agrobacterium-mediated transformation was conducted using a B. rapa inbred line ('CT001') and the pSL100 vector containing the BrDSR full length CDS (438 bp open reading frame). Four transgenic plants were selected by PCR and the expression level of BrDSR was approximately 1.9-3.4-fold greater than that in the wild-type control under drought stress. Phenotypic characteristics showed that BrDSR over-expressing plants were resistant to drought stress and showed normal growth habit. To construct a co-expression network of drought-responsive genes, B. rapa 135K cDNA microarray data was analyzed to identify genes associated with BrDSR. BrDSR was directly linked to DARK INDUCIBLE 2 (DIN2, AT3G60140) and AUTOPHAGY 8H (ATG8H, AT3G06420) previously reported to be leaf senescence and autophagy-related genes in plants. Taken together, the results of this study indicated that BrDSR plays a significant role in enhancement of tolerance to drought conditions.

A Comparison of Adult and Pediatric Methicillin-Resistant Staphylococcus aureus Isolates Collected from Patients at a University Hospital in Korea

  • Park, Jin-Yeol;Jin, Jong-Sook;Kang, Hee-Young;Jeong, Eun-Hee;Lee, Je-Chul;Lee, Yoo-Chul;Seol, Sung-Yong;Cho, Dong-Taek;Kim, Jung-Min
    • Journal of Microbiology
    • /
    • v.45 no.5
    • /
    • pp.447-452
    • /
    • 2007
  • In this study, we compared the phenotypic and genotypic characteristics of 138 MRSA isolates obtained from adult and pediatric patients (adult, 50; children, 88). The resistance rates against gentamicin, clindamycin, and ciprofloxacin were much higher in the adult MRSA isolates than in the pediatric MRSA isolates. The ermC gene, which is responsible for inducible clindamycin resistance, was detected in 52(59.1%) of the 88 pediatric MRSA isolates but in only 5(10.0%) of the 50 adult MRSA isolates. MRSA isolates of clonal type ST5 with an integration of SCCmec type II/II variants was the most predominant clone among the adult isolates, while clonal type ST72 with an integration of SCCmec IV/IVA was the most predominant clone among the pediatric MRSA isolates. Staphylococcal enterotoxin A and toxic shock syndrome toxin-1 were prevalent among the adult MRSA isolates but not among the pediatric MRSA isolates. The results of this study demonstrated remarkable differences between adult and pediatric MRSA isolates in terms of their antimicrobial susceptibility profiles, SCCmec type, multilocus sequence type, staphylococcal toxin genes, and erythromycin resistance genes.

Activation of Defense Responses in Chinese Cabbage by a Nonhost Pathogen, Pseudomonas syringae pv. tomato

  • Park, Yong-Soon;Jeon, Myeong-Hoon;Lee, Sung-Hee;Moon, Jee-Sook;Cha, Jae-Soon;Kim, Hak-Yong;Cho, Tae-Ju
    • BMB Reports
    • /
    • v.38 no.6
    • /
    • pp.748-754
    • /
    • 2005
  • Pseudomonas syringae pv. tomato (Pst) causes a bacterial speck disease in tomato and Arabidopsis. In Chinese cabbage, in which host-pathogen interactions are not well understood, Pst does not cause disease but rather elicits a hypersensitive response. Pst induces localized cell death and $H_2O_2$ accumulation, a typical hypersensitive response, in infiltrated cabbage leaves. Pre-inoculation with Pst was found to induce resistance to Erwinia carotovora subsp. carotovora, a pathogen that causes soft rot disease in Chinese cabbage. An examination of the expression profiles of 12 previously identified Pst-inducible genes revealed that the majority of these genes were activated by salicylic acid or BTH; however, expressions of the genes encoding PR4 and a class IV chitinase were induced by ethephon, an ethylene-releasing compound, but not by salicylic acid, BTH, or methyl jasmonate. This implies that Pst activates both salicylate-dependent and salicylate-independent defense responses in Chinese cabbage.

Tangeretin Improves Glucose Uptake in a Coculture of Hypertrophic Adipocytes and Macrophages by Attenuating Inflammatory Changes

  • Shin, Hye-Sun;Kang, Seong-Il;Ko, Hee-Chul;Park, Deok-bae;Kim, Se-Jae
    • Development and Reproduction
    • /
    • v.21 no.1
    • /
    • pp.93-100
    • /
    • 2017
  • Obesity is characterized by a state of chronic low-grade inflammation and insulin resistance, which are aggravated by the interaction between hypertrophic adipocytes and macrophages. In this study, we investigated the effects of tangeretin on inflammatory changes and glucose uptake in a coculture of hypertrophic adipocytes and macrophages. Tangeretin decreased nitric oxide production and the expression of interleukin (IL)-6, $IL-1{\beta}$, tumor necrosis $factor-{\alpha}$, inducible nitric oxide synthase, and cyclooxygenase-2 in a coculture of 3T3-L1 adipocytes and RAW 264.7 cells. Tangeretin also increased glucose uptake in the coculture system, but did not affect the phosphorylation of insulin receptor substrate (IRS) and Akt. These results suggest that tangeretin improves insulin resistance by attenuating obesity-induced inflammation in adipose tissue.

Functional Characterization of PR-1 Protein, β-1,3-Glucanase and Chitinase Genes During Defense Response to Biotic and Abiotic Stresses in Capsicum annuum

  • Hong, Jeum-Kyu;Hwang, Byung-Kook
    • The Plant Pathology Journal
    • /
    • v.21 no.3
    • /
    • pp.195-206
    • /
    • 2005
  • Spatial and temporal expression of pathogenesis-related (PR) gene and proteins has been recognized as inducible defense response in pepper plants. Gene expression and/or protein accumulation of PR-1, $\beta-1,3-glucanase$ and chitinase was predominantly found in pepper plants during the inoculations by Xanthomonas campestris pv. vesicatoria, Phytophthora capsici and Colletotrichum coccodes. PR-1 and chitinase genes were also induced in pepper plants in response to environmental stresses, such as high salinity and drought. PR-1 and chitinase gene expressions by biotic and abiotic stresses were regulated by their own promoter regions containing several stress-related cis-acting elements. Overexpression of pepper PR-1 or chitinase genes in heterogeneous transgenic plants showed enhanced disease resistance as well as environmental stress tolerances. In this review, we focused on the putative function of pepper PR-1, $\beta-1,3-glucanase$ and chitinase proteins and/or genes at the biochemical, molecular and cytological aspects.

Application of Jasmonic Acid Followed by Salicylic Acid Inhibits Cucumber mosaic virus Replication

  • Luo, Ying;Shang, Jing;Zhao, Pingping;Xi, Dehui;Yuan, Shu;Lin, Honghui
    • The Plant Pathology Journal
    • /
    • v.27 no.1
    • /
    • pp.53-58
    • /
    • 2011
  • Systemic acquired resistance is a form of inducible resistance that is triggered in systemic healthy tissues of local-infected plants. Several candidate signaling molecules emerged in the past two years, including the methylated derivatives of well-known defense hormones salicylic acid (SA) and jasmonic acid (JA). In our present study, the symptom on Cucumber mosaic virus (CMV) infected Arabidopsis leaves in 0.1 mM SA or 0.06 mM JA pre-treated plants was lighter (less reactive oxygen species accumulation and less oxidative damages) than that of the control group. JA followed by SA (JA${\rightarrow}$SA) had the highest inhibitory efficiency to CMV replication, higher than JA and SA simultaneous co-pretreatment (JA+SA), and higher than a JA or a SA single pretreatment. The crosstalk between the two hormones was further investigated at the transcriptional levels of pathogenesis-related genes. The time-course measurement showed JA might play a more important role in the interaction between JA and SA.

Regulation of CMGC kinases by hypoxia

  • KyeongJin Kim;Sang Bae Lee
    • BMB Reports
    • /
    • v.56 no.11
    • /
    • pp.584-593
    • /
    • 2023
  • Hypoxia, a widespread occurrence observed in various malignant tumors, results from rapid tumor growth that outpaces the oxygen supply. Tumor hypoxia precipitates several effects on tumor biology; these include activating angiogenesis, intensifying invasiveness, enhancing the survival of tumor cells, suppressing anti-tumor immunity, and fostering resistance to therapy. Aligned with the findings that correlate CMGC kinases with the regulation of Hypoxia-Inducible Factor (HIF), a pivotal modulator, reports also indicate that hypoxia governs the activity of CMGC kinases, including DYRK1 kinases. Prolyl hydroxylation of DYRK1 kinases by PHD1 constitutes a novel mechanism of kinase maturation and activation. This modification "primes" DYRK1 kinases for subsequent tyrosine autophosphorylation, a vital step in their activation cascade. This mechanism adds a layer of intricacy to comprehending the regulation of CMGC kinases, and underscores the complex interplay between distinct post-translational modifications in harmonizing precise kinase activity. Overall, hypoxia assumes a substantial role in cancer progression, influencing diverse aspects of tumor biology that include angiogenesis, invasiveness, cell survival, and resistance to treatment. CMGC kinases are deeply entwined in its regulation. To fathom the molecular mechanisms underpinning hypoxia's impact on cancer cells, comprehending how hypoxia and prolyl hydroxylation govern the activity of CMGC kinases, including DYRK1 kinases, becomes imperative. This insight may pave the way for pioneering therapeutic approaches that target the hypoxic tumor microenvironment and its associated challenges.