• 제목/요약/키워드: induced potential

검색결과 4,816건 처리시간 0.058초

Gintonin, a Panax ginseng-derived LPA receptor ligand, attenuates kainic acid-induced seizures and neuronal cell death in the hippocampus via anti-inflammatory and anti-oxidant activities

  • Jong Hee Choi;Tae Woo Kwon;Hyo Sung Jo;Yujeong Ha;Ik-Hyun Cho
    • Journal of Ginseng Research
    • /
    • 제47권3호
    • /
    • pp.390-399
    • /
    • 2023
  • Background: Gintonin (GT), a Panax ginseng-derived lysophosphatidic acid receptor (LPAR) ligand, has positive effects in cultured or animal models for Parkinson's disease, Huntington's disease, and so on. However, the potential therapeutic value of GT in treating epilepsy has not yet been reported. Methods: Effects of GT on epileptic seizure (seizure) in kainic acid [KA, 55mg/kg, intraperitoneal (i.p.)]-induced model of mice, excitotoxic (hippocampal) cell death in KA [0.2 ㎍, intracerebroventricular (i.c.v.)]-induced model of mice, and levels of proinflammatory mediators in lipopolysaccharide (LPS)-induced BV2 cells were investigated. Results: An i.p. injection of KA into mice produced typical seizure. However, it was significantly alleviated by oral administration of GT in a dose-dependent manner. An i.c.v. injection of KA produced typical hippocampal cell death, whereas it was significantly ameliorated by administration of GT, which was related to reduced levels of neuroglial (microglia and astrocyte) activation and proinflammatory cytokines/enzymes expression as well as increased level of the Nrf2-antioxidant response via the upregulation of LPAR 1/3 in the hippocampus. However, these positive effects of GT were neutralized by an i.p. injection of Ki16425, an antagonist of LPA1-3. GT also reduced protein expression level of inducible nitric-oxide synthase, a representative proinflammatory enzyme, in LPS-induced BV2 cells. Treatment with conditioned medium clearly reduced cultured HT-22 cell death. Conclusion: Taken together, these results suggest that GT may suppress KA-induced seizures and excitotoxic events in the hippocampus through its anti-inflammatory and antioxidant activities by activating LPA signaling. Thus, GT has a therapeutic potential to treat epilepsy.

청피 에탄올 추출물이 스트레스성 카테콜아민으로 유도한 간암세포의 전이를 억제하는 효과 및 기전 연구 (Inhibition of Adrenergic Agonists-induced Metastatic Ability of Liver Cancer Cells by Ethanol Extract of Premature Citrus Unshiu Peel)

  • 박신형
    • 동의생리병리학회지
    • /
    • 제38권1호
    • /
    • pp.10-15
    • /
    • 2024
  • Previous studies have highlighted the pivotal role of the β-adrenergic receptor (β-AR) signaling pathway in stimulating cancer metastasis induced by chronic stress. According to the theory of traditional Korean medicine, chronic stress can induce Qi stagnation. Based on the traditional role of premature citrus unshiu peel in moving Qi, we hypothesized that an ethanol extract of premature citrus unshiu peel (EPCU) can attenuate chronic stress-induced cancer progression. In this study, we investigated the potential role of EPCU on modulating the adrenergic agonists-induced metastatic properties of liver cancer cells. Our findings revealed that adrenergic agonists, including norepinephrine (NE), epinephrine (E), and isoproterenol (ISO), augmented the migratory capacity of Hep3B human hepatocellular carcinoma cells, which was completely abrogated by EPCU treatment in a concentration-dependent manner. Consistently, EPCU inhibited the E-induced invasive property of Hep3B cells in a dose-dependent manner. These results suggest that EPCU efficiently attenuates adrenergic agonists-induced metastatic abilities of liver cancer cells. As a molecular mechanism, EPF suppressed the phosphorylation of major components of β-AR signaling pathway, including Src, signal transducer and activator of transcription 3 (STAT3) and ERK, induced by E treatment. Taken together, our results demonstrate that EPCU impedes the adrenergic agonists-driven metastatic potential of cancer cells by inhibiting β-AR signaling pathway. This study provides basic evidence supporting the probable use of premature citrus unshiu peel to prevent metastasis in liver cancer patients under chronic stress.

대지전위와 통신회선 잡음 발생에 대한 고찰 (A Study on the Generation of the Earth Potential and Communication Line Noise.)

  • 여상근;박찬원
    • 한국조명전기설비학회:학술대회논문집
    • /
    • 한국조명전기설비학회 2007년도 춘계학술대회 논문집
    • /
    • pp.33-38
    • /
    • 2007
  • This paper presents a experimental evidence of the generation of the earth potential and communication line noise from the electric railway. There is a critical measurement err in case of measuring the electrical power induced noise voltage and degree of cable balance in the field of earth potential generated. As a results, it has been found that the conventional cable has more noise immunity than shielded cable near the railway where the earth current flows through the sheath layer.

  • PDF

Transverse earthquake-induced forces in continuous bridges

  • Armouti, Nazzal S.
    • Structural Engineering and Mechanics
    • /
    • 제14권6호
    • /
    • pp.733-738
    • /
    • 2002
  • A simplified rational method is developed to evaluate transverse earthquake-induced forces in continuous bridges. This method models the bridge as a beam on elastic foundation, and assumes a sinusoidal curve for both vibration mode shape and deflected shape in the transverse direction. The principle of minimum total potential is used to calculate the displacements and the earthquake-induced forces in the transverse direction. This method is concise and easy to apply, and hence, offers an attractive alternative to a lengthy and time consuming three dimensional modeling of the bridge as given by AASHTO under its Single Mode Spectral Analysis Method.

Involvement of Transient Receptor Potential Melastatin 7 Channels in Sophorae Radix-induced Apoptosis in Cancer Cells - Sophorae Radix and TRPM7 -

  • Kim, Byung-Joo
    • 대한약침학회지
    • /
    • 제15권3호
    • /
    • pp.31-38
    • /
    • 2012
  • Sophorae Radix (SR) plays a role in a number of physiologic and pharmacologic functions in many organs. Objective: The aim of this study was to clarify the potential role for transient receptor potential melastatin 7 (TRPM7) channels in SR-inhibited growth and survival of AGS and MCF-7 cells, the most common human gastric and breast adenocarcinoma cell lines. Methods: The AGS and the MCF-7 cells were treated with varying concentrations of SR. Analyses of the caspase-3 and - 9 activity, the mitochondrial depolarization and the poly (ADPribose) polymerase (PARP) cleavage were conducted to determine if AGS and MCF-7 cell death occured by apoptosis. TRPM7 channel blockers ($Gd^{3+}$ or 2-APB) and small interfering RNA (siRNA) were used in this study to confirm the role of TRPM7 channels. Furthermore, TRPM7 channels were overexpressed in human embryonic kidney (HEK) 293 cells to identify the role of TRPM7 channels in AGS and MCF-7 cell growth and survival. Results: The addition of SR to a culture medium inhibited AGS and MCF-7 cell growth and survival. Experimental results showed that the caspase-3 and -9 activity, the mitochondrial depolarization, and the degree of PARP cleavage was increased. TRPM7 channel blockade, either by $Gd^{3+}$ or 2-APB or by suppressing TRPM7 expression with small interfering RNA, blocked the SR-induced inhibition of cell growth and survival. Furthermore, TRPM7 channel overexpression in HEK 293 cells exacerbated SR-induced cell death. Conclusions: These findings indicate that SR inhibits the growth and survival of gastric and breast cancer cells due to a blockade of the TRPM7 channel activity. Therefore, TRPM7 channels may play an important role in the survival of patients with gastric and breast cancer.

Potential Moracin M Prodrugs Strongly Attenuate Airway Inflammation In Vivo

  • Lee, Jongkook;Mandava, Suresh;Ahn, Sung-Hoon;Bae, Myung-Ae;So, Kyung Soo;Kwon, Ki Sun;Kim, Hyun Pyo
    • Biomolecules & Therapeutics
    • /
    • 제28권4호
    • /
    • pp.344-353
    • /
    • 2020
  • This study aims to develop new potential therapeutic moracin M prodrugs acting on lung inflammatory disorders. Potential moracin M prodrugs (KW01-KW07) were chemically synthesized to obtain potent orally active derivatives, and their pharmacological activities against lung inflammation were, for the first time, examined in vivo using lipopolysaccharide (LPS)-induced acute lung injury model. In addition, the metabolism of KW02 was also investigated using microsomal stability test and pharmacokinetic study in rats. When orally administered, some of these compounds (30 mg/kg) showed higher inhibitory action against LPS-induced lung inflammation in mice compared to moracin M. Of them, 2-(3,5-bis((dimethylcarbamoyl)oxy)phenyl)benzofuran-6-yl acetate (KW02) showed potent and dose-dependent inhibitory effect on the same animal model of lung inflammation at 1, 3, and 10 mg/kg. This compound at 10 mg/kg also significantly reduced IL-1β concentration in the bronchoalveolar lavage fluid of the inflamed-lungs. KW02 was rapidly metabolized to 5-(6-hydroxybenzofuran-2-yl)-1,3-phenylene bis(dimethylcarbamate) (KW06) and moracin M when it was incubated with rat serum and liver microsome as expected. When KW02 was administered to rats via intravenous or oral route, KW06 was detected in the serum as a metabolite. Thus, it is concluded that KW02 has potent inhibitory action against LPS-induced lung inflammation. It could behave as a potential prodrug of moracin M to effectively treat lung inflammatory disorders.

반사방지막(ARC)의 SiO2 구조에 따른 PERC 태양전지 PID 열화 완화 상관관계 연구 (Mitigation of Potential-Induced Degradation (PID) for PERC Solar Cells Using SiO2 Structure of ARC Layer)

  • 오경석;박지원;천성일
    • Current Photovoltaic Research
    • /
    • 제8권4호
    • /
    • pp.114-119
    • /
    • 2020
  • In this study, Mitigation of Potential-induced degradation (PID) for PERC solar cells using SiO2 Structure of ARC layer. The conventional PID test was conducted with a cell-level test based on the IEC-62804 test standard, but a copper PID test device was manufactured to increase the PID detection rate. The accelerated aging test was conducted by maintaining 96 hours with a potential difference of 1000 V at a temperature of 60℃. As a result, the PERC solar cell of SiO2-Free ARC structure decreased 22.11% compared to the initial efficiency, and the PERC solar cell of the Upper-SiO2 ARC structure decreased 30.78% of the initial efficiency and the PID reliability was not good. However, the PERC solar cell with the lower-SiO2 ARC structure reduced only 2.44%, effectively mitigating the degradation of PID. Na+ ions in the cover glass generate PID on the surface of the PERC solar cell. In order to prevent PID, the structure of SiNx and SiO2 thin films of the ARC layer is important. SiO2 thin film must be deposited on bottom of ARC layer and the surface of the PERC solar cell N-type emitter to prevent surface recombination and stacking fault defects of the PERC solar cell and mitigated PID degradation.

Effect of Polygonati Sibirici Rhizoma on Cell Viability in Human Glioma Cells

  • Kim, Min-Soo;Jeong, Ji-Cheon
    • 대한한의학회지
    • /
    • 제29권1호
    • /
    • pp.95-105
    • /
    • 2008
  • Objectives : Although herbal medicines containing flavonoids have been reported to exert anti-tumor activities, it has not been explored whether Hwang-Jeong (Polygonati sibirici Rhizoma, PsR) exerts anti-tumor activity in human glioma. The present study was therefore undertaken to examine the effect of PsR on cell viability and to determine its underlying mechanism in A172 human glioma cells. Methods : Cell viability was estimated by MTT assay. Reactive oxygen species generation and mitochondrial membrane potential were measured by the fluorescence dyes. The phosphorylation of kinases was evaluated by western blot analysis and caspase activity was estimated using colorimetric assay kit. Results : PsR resulted in loss of cell viability in a dose- and time-dependent manner. PsR did not increase reactive oxygen species (ROS) generation and the PsR-induced cell death was also not affected by antioxidants, suggesting that ROS generation is not involved in loss of cell viability. Western blot analysis showed that PsR treatment caused rapid reduction in phosphorylation of extracellular signal-regulated kinase (ERK) without changes in p38 and Jun-NH2-terminal kinase (JNK). U0126, an inhibitor of ERK, increased the PsR-induced cell death, but inhibitors of p38 and JNK did not affect the cell death. PsR induced depolarization of mitochondrial membrane potential. Caspase activity was not stimulated by PsR and caspase inhibitors did not prevent the PsR-induced cell death. Conclusion : Taken together, these findings suggest that PsR results in human glioma cell death through caspaseindependent mechanisms involving down-regulation of ERK.

  • PDF

Sesamin induces A549 cell mitophagy and mitochondrial apoptosis via a reactive oxygen species-mediated reduction in mitochondrial membrane potential

  • Yang, Shasha;Li, Xiangdan;Dou, Haowen;Hu, Yulai;Che, Chengri;Xu, Dongyuan
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제24권3호
    • /
    • pp.223-232
    • /
    • 2020
  • Sesamin, a lipid-soluble lignin originally isolated from sesame seeds, which induces cancer cell apoptosis and autophagy. In the present study, has been reported that sesamin induces apoptosis via several pathways in human lung cancer cells. However, whether mitophagy is involved in sesamin induced lung cancer cell apotosis remains unclear. This study, the anticancer activity of sesamin in lung cancer was studied by reactive oxygen species (ROS) and mitophagy. A549 cells were treated with sesamin, and cell viability, migration ability, and cell cycle were assessed using the CCK8 assay, scratch-wound test, and flow cytometry, respectively. ROS levels, mitochondrial membrane potential, and apoptosis were examined by flow cytometric detection of DCFH-DA fluorescence and by using JC-1 and TUNEL assays. The results indicated that sesamin treatment inhibited the cell viability and migration ability of A549 cells and induced G0/G1 phase arrest. Furthermore, sesamin induced an increase in ROS levels, a reduction in mitochondrial membrane potential, and apoptosis accompanied by an increase in cleaved caspase-3 and cleaved caspase-9. Additionally, sesamin triggered mitophagy and increased the expression of PINK1 and translocation of Parkin from the cytoplasm to the mitochondria. However, the antioxidant N-acetyl-L-cysteine clearly reduced the oxidative stress and mitophagy induced by sesamin. Furthermore, we found that cyclosporine A (an inhibitor of mitophagy) decreased the inhibitory effect of sesamin on A549 cell viability. Collectively, our data indicate that sesamin exerts lethal effects on lung cancer cells through the induction of ROS-mediated mitophagy and mitochondrial apoptosis.

L-histidine and L-carnosine exert anti-brain aging effects in D-galactose-induced aged neuronal cells

  • Kim, Yerin;Kim, Yuri
    • Nutrition Research and Practice
    • /
    • 제14권3호
    • /
    • pp.188-202
    • /
    • 2020
  • BACKGROUND/OBJECTIVES: Brain aging is a major risk factor for severe neurodegenerative diseases. Conversely, L-histidine and L-carnosine are known to exhibit neuroprotective effects. The aim of this study was to examine the potential for L-histidine, L-carnosine, and their combination to mediate anti-brain aging effects in neuronal cells subjected to D-galactose-induced aging. MATERIALS/METHODS: The neuroprotective potential of L-histidine, L-carnosine, and their combination was examined in a retinoic acid-induced neuronal differentiated SH-SY5Y cell line exposed to D-galactose (200 mM) for 48 h. Neuronal cell proliferation, differentiation, and expression of anti-oxidant enzymes and apoptosis markers were subsequently evaluated. RESULTS: Treatment with L-histidine (1 mM), L-carnosine (10 mM), or both for 48 h efficiently improved the proliferation, neurogenesis, and senescence of D-galactose-treated SH-SY5Y cells. In addition, protein expression levels of both neuronal markers (β tubulin-III and neurofilament heavy protein) and anti-oxidant enzymes, glutathione peroxidase-1 and superoxide dismutase-1 were up-regulated. Conversely, protein expression levels of amyloid β (1-42) and cleaved caspase-3 were down-regulated. Levels of mRNA for the pro-inflammatory cytokines, interleukin (IL)-8, IL-1β, and tumor necrosis factor-α were also down-regulated. CONCLUSIONS: To the best of our knowledge, we provide the first evidence that L-histidine, L-carnosine, and their combination mediate anti-aging effects in a neuronal cell line subjected to D-galactose-induced aging. These results suggest the potential benefits of L-histidine and L-carnosine as anti-brain aging agents and they support further research of these amino acid molecules.