• Title/Summary/Keyword: induced current measurement system

Search Result 52, Processing Time 0.031 seconds

Measurement of the displacement current using Kuhn-type LB film apparatus (Kuhn형 LB막 누적장치에서의 변위전류 측정)

  • Song, K.H.;Park, T.G.;Park, K.H.;Kwon, Y.S.;Kang, D.Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07b
    • /
    • pp.1200-1202
    • /
    • 1993
  • There are many methods to investigate the physical properties of monolayers formed at the air-water interface. Among them, the displacement current method is appropriate for the investigation of the dynamic behavior of monolayers. The measuring system of displacement current method was constructed at home-made Kuhn type LB deposition apparatus using aluminium plate electrode. The currents induced by the dynamic motion of molecules were measured when the molecules were pressed by barrier. To verify the measuring system, we used 4-octyl -4'-(5-carboxy-pentamethyleneoxy)-azobenzene molecules which has two remarkable variations of surface pressure of monolayer at the air-water interface. We can detect the two peaks of displacement currents which shows that the orientations of molecules are changed greatly at the state of these two remarkable changes of surface pressure.

  • PDF

32-Channel Bioimpedance Measurement System for the Detection of Anomalies with Different Resistivity Values (저항률이 다른 내부 물체의 검출을 위한 32-채널 생체 임피던스 측정 시스템)

  • 조영구;우응제
    • Journal of Biomedical Engineering Research
    • /
    • v.22 no.6
    • /
    • pp.503-510
    • /
    • 2001
  • In this paper. we describe a 32-channel bioimpedance measurement system It consists of 32 independent constant current sources of 50 kHz sinusoid. The amplitude of each current source can be adjusted using a 12-bit MDAC. After we applied a pattern of injection currents through 32 current injection electrodes. we measured induced boundary voltages using a variable-gain narrow-band instrumentation amplifier. a Phase-sensitive demodulator. and a 12-bit ADC. The system is interfaced to a PC for the control and data acquisition. We used the system to detect anomalies with different resistivity values in a saline Phantom with 290mm diameter The accuracy of the developed system was estimated as 2.42% and we found that anomalies larger than 8mm in diameter can be detected. We Plan to improve the accuracy by using a digital oscillator improved current sources by feedback control, Phase-sensitive A/D conversion. etc. to detect anomalies smaller than 1mm in diameter.

  • PDF

Measurement of the Induced Voltages and Magnetic Fields Produced by Multiple Lightning Discharges (뇌방전에 의한 유도전압과 자장의 측정)

  • Lee, B.H.;Cho, S.C.;Lee, W.C.;Shim, E.B.;Woo, J.W.
    • Proceedings of the KIEE Conference
    • /
    • 2004.07c
    • /
    • pp.1866-1868
    • /
    • 2004
  • This paper deals with the device for measuring the time-varying magnetic fields and induced voltages caused by lightning discharges. The system consists of two loop antennas for the measuring the magnetic flux density and induced voltages caused by the lightning current, an integrator a data acquisition and a personal computer with a software package that was developed for the analysis of the measurements.

  • PDF

Analysis of Return Current Effect for Track Circuit on Ho-Nam high Speed Line (고속열차 운행에 따른 호남고속철도 궤도회로 귀선전류 영향 분석)

  • Baek, Jong-hyen
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.42 no.5
    • /
    • pp.1110-1116
    • /
    • 2017
  • Depending on the operating characteristics, track circuit is installed for the purpose of direct or indirect control of the signal device, point switch machine and other security device. These are mainly used for train detection, transmission of information, broken rail detection and transmission of return current. Especially, the return current is related to signal system, power system and catenary line, and track circuit systems. It is one of the most important component shall be dealt for the safety of track side staff and for the protection of railway-related electrical system according to electrification. Therefore, an accurate analysis of the return current is needed to prevent the return current unbalance and the system induced disorder and failure due to an over current condition. Also, if the malfunction occurred by the return current harmonics, it can cause problems including train operation interruption. In this paper, we presented measurement and analysis method at return current and it's harmonics by high speed train operation on the honam high speed line.

Development of Sheet Metal Forming Apparatus Using Electromagnetic Lorentz Force (전자기 로렌쯔력을 이용한 박판성형 장비 개발)

  • Lee, H.M.;Kang, B.S.;Kim, J.
    • Transactions of Materials Processing
    • /
    • v.19 no.1
    • /
    • pp.38-43
    • /
    • 2010
  • Electromagnetic forming (EMF) method is one of high-velocity forming processes, which uses electromagnetic Lorentz force. Advantages of this forming technique are summarized as improvement of formability, reduction in wrinkling, non-contact forming and applications of various forming process. In this study, the EMF apparatus is developed. It is designed to be stored in 10 capacitors connected in parallel, each with a capacitance of $50{\mu}F$ and maximum working voltage of 5kV. The system has capacitance of $500{\mu}F$ and maximum stored energy of 6.25kJ. And EMF experiments are carried out to verify the feasibility of the EMF apparatus, which has enough forming force from the results of EMF experiment. In addition, peak current carrying a forming coil is predicted from theoretical background, and verified the predicted value compared with experimental value using the current measurement equipment. Consequently, EMF apparatus developed in this study can be applied to various EMF researches for commercialization.

A Study on Lightning Overvoltage Characteristics of Grounding Systems in Underground Distribution Power Cables

  • Jung, Chae-Kyun;Jung, Yeon-Ha;Kang, Ji-Won
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.2
    • /
    • pp.628-634
    • /
    • 2014
  • This paper investigates the transient characteristics of grounding systems used in under-ground distribution power cables. Recently, two kinds of grounding system are used for underground distribution cables in Korea. The first one is conventional multi-point grounding system, the other is newly proposed non-bundled common grounding system. The non-bundled common grounding system has an advantage the decreasing the power loss due to decrease of the shield circulation current. In this paper, the lightning overvoltage induced in neutral wire (in case of non-bundled common grounding system, overvoltage between opened neural wires and grounding in each phase) of these two kinds of grounding systems are estimated and compared by field tests and EMTP simulations. The EMTP simulation methods are firstly verified by comparison of measurement and simulation. Finally, the insulation level against lightning is expected by EMTP simulation results using verified model.

Evaluation of Human Factors for the Next-Generation Displays: A Review of Subjective and Objective Measurement Methods

  • Mun, Sungchul;Park, Min-Chul
    • Journal of the Ergonomics Society of Korea
    • /
    • v.32 no.2
    • /
    • pp.207-215
    • /
    • 2013
  • Objective: This study aimed to investigate important human factors that should be considered when developing ultra-high definition TVs by reviewing measurement methods and main characteristics of ultra-high definition displays. Background: Although much attention has been paid to high-definition displays, there have been few studies for systematically evaluating human factors. Method: In order to determine human factors to be considered in developing human-friendly displays, we reviewed subjective and objective measurement methods to figure out the current limitations and establish a guideline for developing human-centered ultra-high definition TVs. In doing so, pros and cons of both subjective and objective measurement methods for assessing humans factors were discussed and specific aspects of ultra-high definition displays were also investigated in the literature. Results: Hazardous effects such as visually-induced motion sickness, visual fatigue, and mental fatigue in the brain caused by undesirable TV viewing are induced by not only temporal decay of visual function but also cognitive load in processing sophisticated external information. There has been a growing evidence that individual differences in visual and cognitive ability to process external information can make contrary responses after exposing to the same viewing situation. A wide vision, ultra-high definition TVs provide, can has positive and negative influences on viewers depending on their individual characteristics. Conclusion: Integrated measurement methods capable of considering individual differences in human visual system are required to clearly determine potential effects of super-high vision displays with a wide view on humans. All of brainwaves, autonomic responses, eye functions, and psychological responses should be simultaneously examined and correlated. Application: The results obtained in this review are expected to be a guideline for determining optimized viewing factors of ultra-high definition displays and accelerating successful penetration of the next-generation displays into our daily life.

Ground Resistance Measurement Technology Utilizing the Variation Rate (변이율을 활용한 접지저항 측정 기술)

  • Lee, Sang-Mu
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.3
    • /
    • pp.51-56
    • /
    • 2005
  • Ground resistance measurement is an elementary technique for the evaluation of grounding system. There are main environmental factors to consider for correct measurement, but the problem is that it is practically most cases to measure ground resistance unable to know the factors. This paper presents a methodology toward true value of resistance in the unknown circumstance, utilizing the defined term, 'variation rate' of potential difference curve appearing in the distance to a current probe as in the three point fall-of-potential method which comprises the characteristics of environmental factors. This methodology is a induced result from the previous demostrated studies.

Characteristics of Tool Deflection of Ball-end Mill Cutter in Pencil Cutting of the Corner (코너부의 펜슬가공시 볼엔드밀의 공구변형 특성)

  • Wang, Duck-Hyun;Yun, Kyung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.16 no.2 s.95
    • /
    • pp.123-129
    • /
    • 1999
  • Ball-end milling process is widely used in the die and mold manufacturing because of suitable one for the machining of free-form surface. During the process, the pencil cutting operation can be adopted before finish cut to eliminate overload in uncut area caused by large diameter of ball-end mill. The ball-end mill cutter for the pencil cutting is easily deflected by cutting force due to the long and thin shape, and the tool deflection in pencil cutting is one of the main reason of the machining errors in a free-form surface. The purpose of this study is to find the characteristics of deflected cutter trajectory by constructing measurement system with eddy-current sensor. It was found that the severe reduction of corner radius produced the overcut during the plane cutting. Up cutting method induced the overcut both plane and slope cutting, but down cutting one induced the undercut. From the experiments, down cutting with upward cutting path can generate the small undercut surface.

  • PDF

Measurement of the Drift Velocity for Electron Swarm in a Alkali Metal Using a Induced Current Method (유도 전류법을 이용한 알칼리 금속중에서 전자군의 이동속도 측정)

  • Baek, Yong-Hyeon;Ha, Seong-Cheol;Lee, Bok-Hui;Yu, Gwang-Sik
    • Proceedings of the KIEE Conference
    • /
    • 1985.07a
    • /
    • pp.215-218
    • /
    • 1985
  • In this paper, The electron drift velocity was measured from an experimental study of the open end heat pipe system by induced current method as alkali metal vapour was generated in ordinary region of a drift tube. The test condition was alkali metal vapour range from 3.6 to 20.1(Torr), temperature of 667 to 755(K), and E/N of $1{\times}10^{-16}$ to $1{\times}10^{-15}(v.cm^2)$. The results of this study were obtained essentially the same as the extrapolated prediction curve for electron drift velocity in the alkali metal Vapour of J. Lucas et 31 with range of E/N: $1{\times}10^{-17}$ to $1{\times}10^{-16}(v.cm^2)$, and the electron drift velocity was obtained the result an increase in alkali to E/N range from E/N $2.8{\times}10^{-17}$ to $5.6{\times}10^{-16}(v.cm^2)$ (E/N From 2.8 to 50 Td).

  • PDF