• Title/Summary/Keyword: indoor positioning system

Search Result 324, Processing Time 0.027 seconds

Design and Implementation of Indoor Positioning & Shortest Path Navigation System Using GPS and Beacons in Narrow Buildings

  • Sang-Hyeon, Park;Huhnkuk, Lim
    • Journal of the Korea Society of Computer and Information
    • /
    • v.28 no.3
    • /
    • pp.11-16
    • /
    • 2023
  • As techniques for indoor positioning, fingerprinting, indoor positioning method using trilateration, and utilizing information obtained from equipments by Wi-Fi/Bluetooth, etc are common and representative methods to specify the user's indoor position. However, in these methods, an indoor space should be provided with enough space to install a large number of equipment (AP, Beacon). In this paper, we propose a technique that can express the user's location within a building by simultaneously using the GPS signal and the signal transmitted from the beacon in a building structure where the conventional method cannot be applied, such as a narrow building. A shortest path search system was designed and implemented by applying the Dijkstra Algorithm, one of the most representative and efficient shortest path search algorithms for shortest path search. The proposed technique can be considered as one of the methods for measuring the user's indoor location considering the structural characteristics of a building in the future.

Development of Lighting Control System Based on Location Positioning for Energy Saving (에너지 절약을 위한 위치측위 기반 조명 제어 시스템 개발)

  • Cho, Kyoung-Woo;Jeon, Min-Ho;Oh, Chang-Heon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.18 no.12
    • /
    • pp.2968-2974
    • /
    • 2014
  • When lighting has installed indoor, we control lighting using human-detecting sensors for people who pass at night and places that are lack of quantity of light. However, malfunction can be caused by positions of inappropriate sensors, and in the case of passages of big buildings, it is a problem that even after a person pass, light apparatuses are turned on for a long time. In this paper, we propose lighting control system based on location positioning for energy saving that control lighting in accordance with passers's position through indoor location positioning. This system use the fingerprinting technology that is one of the location positioning technologies and RSSI data that is collected by a smart device. Using those, it can turn on only lightings that are included in the positioned location and reduce unnecessary power consumption. As a result of experiment, on condition that four people were existing and illumination was 308 lux, we assured reduction effect of 49 Wh.

A BIM and UWB integrated Mobile Robot Navigation System for Indoor Position Tracking Applications

  • Park, JeeWoong;Cho, Yong K.;Martinez, Diego
    • Journal of Construction Engineering and Project Management
    • /
    • v.6 no.2
    • /
    • pp.30-39
    • /
    • 2016
  • This research presents the development of a self-governing mobile robot navigation system for indoor construction applications. This self-governing robot navigation system integrated robot control units, various positioning techniques including a dead-reckoning system, a UWB platform and motion sensors, with a BIM path planner solution. Various algorithms and error correction methods have been tested for all the employed sensors and other components to improve the positioning and navigation capability of the system. The research demonstrated that the path planner utilizing a BIM model as a navigation site map could effectively extract an efficient path for the robot, and could be executed in a real-time application for construction environments. Several navigation strategies with a mobile robot were tested with various combinations of localization sensors including wheel encoders, sonar/infrared/thermal proximity sensors, motion sensors, a digital compass, and UWB. The system successfully demonstrated the ability to plan an efficient path for robot's movement and properly navigate through the planned path to reach the specified destination in a complex indoor construction site. The findings can be adopted to several potential construction or manufacturing applications such as robotic material delivery, inspection, and onsite security.

Deep Learning-based Indoor Positioning System Using CSI (채널 상태 정보를 이용한 딥 러닝 기반 실내 위치 확인 시스템)

  • Zhang, Zhongfeng;Choi, Seungwon
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.16 no.4
    • /
    • pp.1-7
    • /
    • 2020
  • Over the past few years, Wi-Fi signal based indoor positioning system (IPS) has been researched extensively because of its low expenses of infrastructure deployment. There are two major aspects of location-related information contained in Wi-Fi signals. One is channel state information (CSI), and one is received signal strength indicator (RSSI). Compared to the RSSI, the CSI has been widely utilized because it is able to reveal fine-grained information related to locations. However, the conventional IPS that employs a single access point (AP) does not exhibit decent performance especially in the environment of non-line-of-sight (NLOS) situations due to the reliability degeneration of signals caused by multipath fading effect. In order to address this problem, in this paper, we propose a novel method that utilizes multiple APs instead of a single AP to enhance the robustness of the IPS. In our proposed method, a hybrid neural network is applied to the CSIs collected from multiple APs. By relying more on the fingerprint constructed by the CSI collected from an AP that is less affected by the NLOS, we find that the performance of the IPS is significantly improved.

Optimization Method of Kalman Filter Parameters Based on Genetic Algorithm for Improvement of Indoor Positioning Accuracy of BLE Beacon (BLE Beacon의 실내 측위 정확도 향상을 위한 Genetic Algorithm 기반 Kalman Filter Parameters 최적화 방법)

  • Kim, Seong-Chang;Kim, Jin-Ho
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.25 no.11
    • /
    • pp.1551-1558
    • /
    • 2021
  • Beacon signals used in indoor positioning system are reflected and distorted, resulting in noise signals. KF(Kalman Filter) has been widely used to remove this noise. In order to apply the KF, optimization process considering the signal type, signal strength, and environmental elements of each product is required. In this paper, we propose a solution to the optimization problem of KF Parameters using GA(Genetic Algorithm) in BLE(Bluetooth Low Energy) Beacon-based indoor positioning system. After optimizing KF Parameters by applying the proposed technique with a certain distance between Beacon and receiver, we compared the estimated distance passed through KF with the unfiltered distance. The proposed technique is expected to reduce the time required and improve accuracy of KF Parameters optimization in an indoor positioning system based on RSSI (Received Signal Strength Indication).

A loop closing scheme using UWB based indoor positioning technique (UWB 기반 실내 측위 기술을 활용한 루프 클로징 기법)

  • Hyunwoo You;Jungkyun Lee;Somi Nam;Juyeon Lee;Yoonseo Lee;Minsung Kim;Hong Min
    • Smart Media Journal
    • /
    • v.12 no.4
    • /
    • pp.41-46
    • /
    • 2023
  • UWB is a type of technology used for indoor positioning and is characterized by higher accuracy than RSSI-based schemes. Mobile equipment operating based on ROS can monitor the environment around the equipment using lidar and cameras. When applying the loop closing technique to determine the starting position in this monitoring process, the existing method has a problem of low accuracy because the closing operation occurs only when there are feature points on the image. In this paper, to solve this problem, we designed a system that increases the accuracy of loop closing work by providing location information by mounting a UWB tag on a mobile device. In addition, the accuracy of the UWB-based indoor positioning system was evaluated through experiments, and it was verified that it could be used for loop closing techniques.

KAI-R: KAIST Railroad Indoor Navigation System for Subway Station (지하철 역사에서 실내 내비게이션 서비스를 위한 KAI-R 시스템)

  • Lee, Gunwoo;Ko, Daegweon;Kim, Hyun;Han, Dongsoo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.18 no.5
    • /
    • pp.156-170
    • /
    • 2019
  • Rapid increasing of smartphones has changed people's lifestyles, and location-based services are providing a platform to provide various conveniences in accordance with these changes. In particular, it may provide convenience to many users if location-based services are provided in an indoor area such as subway station. However, it is still a difficult task to ensure accurate positioning result for guiding routes in subway stations. This study proposes a KAI-R system that allows all processes to be performed in one system for indoor navigation in subway stations. The proposed system includes a new pedestrian step detection method for continuous positioning along with an improved fusion positioning algorithm.

A Feasibility Study on Car Positioning system Using RFID (차량용 측위 시스템에 RFID 적용 가능성 연구)

  • Yoo Young-Min;Lee Chae-Heun;Park Joon-Goo;Park Chan-Gook
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.12 no.10
    • /
    • pp.975-981
    • /
    • 2006
  • This paper shows a feasibility analysis results on RFID for car positioning system. Usually, a car navigation is mainly based on GPS combined with map-matching. However, in the case of poor visibility of satellites, GPS can not supply accurate position information continuously. In recent years, RFID has been considered to be one of key technologies in positioning and localization area. But its application and research results in the area of vehicular positioning are not popular. RFID system consists of tag, reader, antenna and software such as drivers and middleware. The main function of RFID system in a vehicular positioning is to retrieve ID recorded position information from tags which set on the center of road. We propose a positioning method for vehicles using RFID and we present some indoor and outdoor experiment results to show that the proposed method is available in vehicle operational environments.

Study of Coverage Implementation Using Lenticular Sticker (렌티큘러 스티커를 이용한 커버리지 구현 연구)

  • Jeong, Seung-Hyuk
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.14 no.3
    • /
    • pp.573-578
    • /
    • 2019
  • Recently, the development of indoor positioning technology, base station positioning, Wi - Fi positioning, and Bluetooth beacon positioning technology have been introduced in buildings and underground space. This paper introduces a technique that enables user-oriented ultra-high precision positioning by adopting a lenticular positioning technology, which is a method in which a user directly locates a user's moving line based on a provider-oriented positioning system and service. Through the study on the implementation of coverage using lenticular stickers, we will discuss how to implement coverage of lenticular stickers, which is one of the most important parts of lenticular positioning technology.

A Study on Implementation of Indoor Positioning Simulator through Indoor Positioning API Development (실내측위 API개발을 통한 실내측위 시뮬레이터 구현에 관한 연구)

  • Shin, Chang Soo;Kim, Sung Su
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.6
    • /
    • pp.873-881
    • /
    • 2023
  • The evolution of civil engineering technology, exemplified by recent milestones like the completion of the Gangnam Global Business Center (GBC), has fostered the construction of expansive civil and architectural structures both above and below the earth's surface. This surge in construction necessitates a commensurate advancement in research and technology pertaining to safety protocols applicable to these vast edifices. Such protocols encompass a spectrum of concerns, ranging from the preemptive mitigation of accidents to the effective management of exigencies such as fires. As the trajectory of construction endeavors continues unabated, encompassing both subterranean and elevated domains, a concomitant imperative emerges to refine the methodologies underpinning precise indoor positioning. To address this need, an innovative web-based simulator has been devised to emulate indoor positioning scenarios for rigorous testing. This research further entails the development of an indoor positioning data Application Programming Interface (API) fortified by Geographic Information System (GIS) spatial operation techniques. This API is anchored in the construction of intricate test data, centered on the spatial layout of building 13 at the Electronics and Telecommunications Research Institute (ETRI). Consequently, the study renders feasible the expeditious provisioning of diverse signal-based and image-based spatial information, pivotal for enhancing the navigational acumen of mobile devices. Path delineation, cellular signal mapping, landmark identification, and ancillary navigational aids are among the manifold datasets promptly furnished by the indoor positioning data API. In summation, this study engenders a crucial leap towards the fortification of safety protocols and navigational precision within the expansive confines of modern architectural wonders.