• Title/Summary/Keyword: indoor positioning

Search Result 496, Processing Time 0.022 seconds

Design and Implementation of an Integrated Positioning System for Location-Based Services (위치기반서비스를 위한 통합측위시스템 설계 및 응용)

  • Yim, Jae-Geol;Nam, Yoon-Seok;Joo, Jae-Hun
    • Journal of Information Technology Applications and Management
    • /
    • v.13 no.4
    • /
    • pp.57-70
    • /
    • 2006
  • Location Based Service (LBS) provides high-value added service to users and various works about IBS have been actively performed. The core technology or LBS is positioning of the users. In the field of positioning, outdoor positioning and indoor positioning are developed separately. We are proposing a design of an outdoor-indoor positioning system, implementing a prototype of the system, and verifying the usefulness of the system through experiments. Our experimental results shows that the average error of our system is 4.8 m in the case of out-door positioning and it is 3.3 m in the case of in-door positioning.

  • PDF

Identifying Correction Range of Geomagnetic Field for Indoor Positioning of Workers at Construction Site (건설현장 내 작업자 실내측위를 위한 지구자기장 보정 범위 도출)

  • Kim, Hyeonmin;Ahn, Heejae;Lee, Changsu;Kim, Harim;Ko, Youngwoong;Cho, HunHee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.93-94
    • /
    • 2022
  • Although various studies about indoor positioning systems, such as beacon and Wifi, have been conducting for indoor positioning of workers at construction sites, these systems have limitations in terms of accuracy or economics. To overcome these limitations, geomagnetic field sequence-based indoor positioning technology can be a good alternative. However, it is necessary to correct the geomagnetic field near the construction material stocking area since the geomagnetic field can be distorted near construction materials such as rebars. Therefore, this study conducted an experiment for identifying correction range of geomagnetic field near the construction material stocking area. It was analyzed that the geomagnetic field should be corrected up to 60cm in the horizontal direction from the stocking point if the height of stocking area for rebars is 40cm or more. This study can be used for important reference for development of geomagnetic field sequence-based indoor positioning technology suitable for construction sites.

  • PDF

A Study on Global Positioning System of Smart Phone in indoor (실내에서 스마트폰의 글로벌 좌표 인식 시스템에 관한 연구)

  • Oh, Jongtaek
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.15 no.2
    • /
    • pp.151-156
    • /
    • 2015
  • As the proliferation of smart phone, almost every user has one's own smart phone, and the user could get the global position and location based services using GPS system outdoors. But indoor positioning system using GPS does not work, and it could not detect global position using TDOA local positioning system. In this paper, a new indoor global positioning system for smart phone employing GPS receiver and electronic compass device is proposed with the TDOA local positioning system using acoustic signal, and the performance and the experimental result are described.

Indoor Positioning System using Incident Angle Detection of Infrared sensor (적외선 센서의 입사각을 이용한 실내 위치인식 시스템)

  • Kim, Su-Yong;Choi, Ju-Yong;Lee, Man-Hyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.16 no.10
    • /
    • pp.991-996
    • /
    • 2010
  • In this paper, a new indoor positioning system based on incident angle measurement of infrared sensor has been suggested. Though there have been various researches on indoor positioning systems using vision sensor or ultrasonic sensor, they have not only advantages, but also disadvantages. In a new positioning system, there are three infrared emitters on fixed known positions. An incident angle sensor measures the angle differences between each two emitters. Mathematical problems to determine the position with angle differences and position information of emitters has been solved. Simulations and experiments have been implemented to show the performance of this new positioning system. The results of simulation were good. Since there existed problems of noise and signal conditioning, the experimented has been implemented in limited area. But the results were acceptable. This new positioning method can be applied to any indoor systems that need absolute position information.

A Modified Residual-based Extended Kalman Filter to Improve the Performance of WiFi RSSI-based Indoor Positioning (와이파이 수신신호세기를 사용하는 실내위치추정의 성능 향상을 위한 수정된 잔차 기반 확장 칼만 필터)

  • Cho, Seong Yun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.21 no.7
    • /
    • pp.684-690
    • /
    • 2015
  • This paper presents a modified residual-based EKF (Extended Kalman Filter) for performance improvement of indoor positioning using WiFi RSSI (Received Signal Strength Indicator) measurement. Radio signal strength in indoor environments may have irregular attenuation characteristics due to obstacles such as walls, furniture, etc. Therefore, the performance of the RSSI-based positioning with the conventional trilateration method or Kalman filter is insufficient to provide location-based accurate information services. In order to enhance the performance of indoor positioning, in this paper, error analysis of the distance calculated by using the WiFi RSSI measurement is performed based on the radio propagation model. Then, an IARM (Irregularly Attenuated RSSI Measurement) error is defined. Also, it shows that the IARM error is included in the residual of the positioning filter. The IARM error is always positive. So, it is presented that the IARM error can be estimated by taking the absolute value of the residual. Consequently, accurate positioning can be achieved based on the IEM (IARM Error Mitigated) EKF with the residual modified by using the estimated IARM error. The performance of the presented IEM EKF is verified experimentally.

Analysis of Applicability of Visual SLAM for Indoor Positioning in the Building Construction Site (Visual SLAM의 건설현장 실내 측위 활용성 분석)

  • Kim, Taejin;Park, Jiwon;Lee, Byoungmin;Bae, Kangmin;Yoon, Sebeen;Kim, Taehoon
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.11a
    • /
    • pp.47-48
    • /
    • 2022
  • The positioning technology that measures the position of a person or object is a key technology to deal with the location of the real coordinate system or converge the real and virtual worlds, such as digital twins, augmented reality, virtual reality, and autonomous driving. In estimating the location of a person or object at an indoor construction site, there are restrictions that it is impossible to receive location information from the outside, the communication infrastructure is insufficient, and it is difficult to install additional devices. Therefore, this study tested the direct sparse odometry algorithm, one of the visual Simultaneous Localization and Mapping (vSLAM) that estimate the current location and surrounding map using only image information, at an indoor construction site and analyzed its applicability as an indoor positioning technology. As a result, it was found that it is possible to properly estimate the surrounding map and the current location even in the indoor construction site, which has relatively few feature points. The results of this study can be used as reference data for researchers related to indoor positioning technology for construction sites in the future.

  • PDF

Radio Propagation Model and Spatial Correlation Method-based Efficient Database Construction for Positioning Fingerprints (위치추정 전자지문기법을 위한 전파전달 모델 및 공간상관기법 기반의 효율적인 데이터베이스 생성)

  • Cho, Seong Yun;Park, Joon Goo
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.7
    • /
    • pp.774-781
    • /
    • 2014
  • This paper presents a fingerprint database construction method for WLAN RSSI (Received Signal Strength Indicator)-based indoor positioning. When RSSI is used for indoor positioning, the fingerprint method can achieve more accurate positioning than trilateration and centroid methods. However, a FD (Fingerprint Database) must be constructed before positioning. This step is a very laborious process. To reduce the drawbacks of the fingerprint method, a radio propagation model-based FD construction method is presented. In this method, an FD can be constructed by a simulator. Experimental results show that the constructed FD-based positioning has a 3.17m (CEP) error. In this paper, a spatial correlation method is presented to estimate the NLOS(Non-Line of Sight) error included in the FD constructed by a simulator. As a result, the NLOS error of the FD is reduced and the performance of the error compensated FD-based positioning is improved. The experimental results show that the enhanced FD-based positioning has a 2.58m (CEP) error that is a reasonable performance for indoor LBS (Location Based Service).

A Study on the Technological and Environmental Factors Affecting the Accuracy of Beacon Based Indoor Positioning System (기술적, 환경적 요소에 따른 비콘 기반 실내 측위 정확도 변화연구)

  • Byeon, Tae-Woo;Jang, Seong-Yong
    • Journal of the Korea Society for Simulation
    • /
    • v.25 no.2
    • /
    • pp.21-29
    • /
    • 2016
  • Indoor location system has been used Wi-Fi to get a location. After the development of BLE(Bluetooth Low Energy), the interest in the method of a indoor positioning had been move on. It has more advantages than using Wi-Fi. Easy installation, low power consumption, low signal interference and changeable setting(Advertising interval, tx power, etc.). These things can improve efficiency or accuracy in a indoor positioning system. For this reason, recent indoor positioning system uses BLE rather than Wi-Fi. Accordingly, error factors of BLE beacon based indoor positioning should be studying for high accuracy of indoor positioning. In this research, set up few experiment scenarios and keep a close watch on how technological, environmental factor is affecting positioning accuracy. When a application uses largest signal strength to get the indoor location, the mean error of experimental results was decreased compare to using received signal strength in real-time. The result was same when the application applied average and standard deviation to get the indoor location. Changing advertising interval had an effect on the mean error of indoor positioning. Short advertising interval makes the lower mean error than large advertising interval.

A Design for Uplink Indoor Acoustic Positioning System based on Time-Difference-of-Arrival of Self-Generating Sounds (자체발성음의 도달지연시간차 기반 상향 실내음향측위시스템 설계)

  • Yoo, Seung-Soo;Kim, Yeong-Moon;Lee, Ki-Seung;Yoon, Kyoung-Ro;Lee, Seok-Pil;Kim, Sun-Yong
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.35 no.1C
    • /
    • pp.130-137
    • /
    • 2010
  • An uplink indoor positioning system is proposed in the present work, where the acoustic signals are solely used for positioning. The underlying acoustic signals include whistle, finger snap, and hands-clapping. In the proposed method, positioning is achieved by finding the time-difference-of-arrivals using several self-generating sounds. To evaluate the feasibility of the signals and their positioning accuracies, the database of 100 persons about self-generating acoustic signals is built up. The results show that the hands-clapping sound is the most suitable for acoustic-based indoor positioning.

Precise Indoor Positioning Algorithm for Energy Efficiency Based on BLE Fingerprinting (에너지 효율을 고려한 BLE 핑거프린팅 기반의 정밀 실내 측위 알고리즘)

  • Lee, Dohee;Lee, Jaeho
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.41 no.10
    • /
    • pp.1197-1209
    • /
    • 2016
  • As Indoor Positioning System demands due to increased penetration and utilization of smart device, Indoor Positioning System using Wi-Fi or BLE(Bluetooth Low Energy) beacon takes center stage. In this paper, a terminal location of the user is calculated through Microscopic Trilateration using RSSI based on BLE. In the next step, a fingerprinting map appling approximate value of Microscopic Trilateration increases an efficiency of computation amount and energy for Indoor Positioning System. I suggest Indoor Positioning Algorithm based on BLE fingerprinting considering efficiency of energy by conducting precise Trilateration that assure user's terminal position by using AP(Access Point) surrounding targeted fingerprinting cells. And This paper shows experiment and result based on An Suggesting Algorithm in comparison with a fingerprinting based on BLE and Wi-Fi that be used for Indoor Positioning System.