• Title/Summary/Keyword: indoor localization technology

Search Result 132, Processing Time 0.027 seconds

Adaptive Parameter Estimation Method for Wireless Localization Using RSSI Measurements

  • Cho, Hyun-Hun;Lee, Rak-Hee;Park, Joon-Goo
    • Journal of Electrical Engineering and Technology
    • /
    • v.6 no.6
    • /
    • pp.883-887
    • /
    • 2011
  • Location-based service (LBS) is becoming an important part of the information technology (IT) business. Localization is a core technology for LBS because LBS is based on the position of each device or user. In case of outdoor, GPS - which is used to determine the position of a moving user - is the dominant technology. As satellite signal cannot reach indoor, GPS cannot be used in indoor environment. Therefore, research and study about indoor localization technology, which has the same accuracy as an outdoor GPS, is needed for "seamless LBS". For indoor localization, we consider the IEEE802.11 WLAN environment. Generally, received signal strength indicator (RSSI) is used to obtain a specific position of the user under the WLAN environment. RSSI has a characteristic that is decreased over distance. To use RSSI at indoor localization, a mathematical model of RSSI, which reflects its characteristic, is used. However, this RSSI of the mathematical model is different from a real RSSI, which, in reality, has a sensitive parameter that is much affected by the propagation environment. This difference causes the occurrence of localization error. Thus, it is necessary to set a proper RSSI model in order to obtain an accurate localization result. We propose a method in which the parameters of the propagation environment are determined using only RSSI measurements obtained during localization.

Indoor Mobile Localization System and Stabilization of Localization Performance using Pre-filtering

  • Ko, Sang-Il;Choi, Jong-Suk;Kim, Byoung-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.2
    • /
    • pp.204-213
    • /
    • 2008
  • In this paper, we present the practical application of an Unscented Kalman Filter (UKF) for an Indoor Mobile Localization System using ultrasonic sensors. It is true that many kinds of localization techniques have been researched for several years in order to contribute to the realization of a ubiquitous system; particularly, such a ubiquitous system needs a high degree of accuracy to be practical and efficient. Unfortunately, a number of localization systems for indoor space do not have sufficient accuracy to establish any special task such as precise position control of a moving target even though they require comparatively high developmental cost. Therefore, we developed an Indoor Mobile Localization System having high localization performance; specifically, the Unscented Kalman Filter is applied for improving the localization accuracy. In addition, we also present the additive filter named 'Pre-filtering' to compensate the performance of the estimation algorithm. Pre-filtering has been developed to overcome negative effects from unexpected external noise so that localization through the Unscented Kalman Filter has come to be stable. Moreover, we tried to demonstrate the performance comparison of the Unscented Kalman Filter and another estimation algorithm, such as the Unscented Particle Filter (UPF), through simulation for our system.

Error Correction Algorithm of Position-Coded Pattern for Hybrid Indoor Localization (위치패턴 기반 하이브리드 실내 측위를 위한 위치 인식 오류 보정 알고리즘)

  • Kim, Sanghoon;Lee, Seunggol;Kim, Yoo-Sung;Park, Jaehyun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.19 no.2
    • /
    • pp.119-124
    • /
    • 2013
  • Recent increasing demand on the indoor localization requires more advanced and hybrid technology. This paper proposes an application of the hybrid indoor localization method based on a position-coded pattern that can be used with other existing indoor localization techniques such as vision, beacon, or landmark technique. To reduce the pattern-recognition error rate, the error detection and correction algorithm was applied based on Hamming code. The indoor localization experiments based on the proposed algorithm were performed by using a QCIF-grade CMOS sensor and a position-coded pattern with an area of $1.7{\times}1.7mm^2$. The experiments have shown that the position recognition error ratio was less than 0.9 % with 0.4 mm localization accuracy. The results suggest that the proposed method could be feasibly applied for the localization of the indoor mobile service robots.

Indoor Localization Technology Survey

  • Kim, Cheong-Mi;Jang, Beakcheol
    • Journal of the Korea Society of Computer and Information
    • /
    • v.21 no.1
    • /
    • pp.17-24
    • /
    • 2016
  • In this paper, we introduce indoor localization technologies categorizing them into ON/OFF switch and senor based, wireless communication based, and image based technologies. Then we describe several representative techniques for each of them, emphasizing their strengths and weaknesses. We define important performance issues for indoor localization technologies and analyze recent technologies according to the performance issues. Our analyses show that ON/OFF switch based technologies are difficult to install, but accurate and not limited by light. Wireless communication technologies are not limited by light nor distance (space) and do not need additional device. Image based technologies do not need additional device but are limited by light, and their accuracies are affected by light. We believe that this paper provide wise view and necessary information for recent indoor localization technologies.

Development of a Localization System Based on VLC Technique for an Indoor Environment

  • Yi, Keon Young;Kim, Dae Young;Yi, Kwang Moo
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.1
    • /
    • pp.436-442
    • /
    • 2015
  • In this paper, we develop an indoor localization device which embeds localization information into indoor light-emitting-diodes (LED) lighting systems. The key idea of our device is the use of the newly proposed "bit stuffing method". Through the use of stuff bits, our device is able to measure signal strengths even in transient states, which prohibits interference between lighting signals. The stuff bits also scatter the parts of the signal where the LED is turned on, thus provides quality indoor lighting. Additionally, for the indoor localization system based on RSSI and TDM to be practical, we propose methods for the control of LED lamps and compensation of received signals. The effectiveness of the proposed scheme is validated through experiments with a low-cost implementation including an indoor navigation task.

Optimization of base stations' configuration in UWB-based indoor localization (UWB를 이용한 실내측위의 베이스 스테이션 최적 배치)

  • Chang Ho-Wook;Cha Maeng-Q.;Kim Yong-Il;Yu Ki-Yun
    • Proceedings of the Korean Society of Surveying, Geodesy, Photogrammetry, and Cartography Conference
    • /
    • 2006.04a
    • /
    • pp.3-7
    • /
    • 2006
  • Indoor localization is getting more and more importance with the increasing demand for location based service. Location based service necessarily requires the information about customers' locations to provide them the right service according to their changing locations. To satisfy that requirement, GPS is used to achieve outdoor localization. However, there is no leading technology to achieve indoor localization. Indoor localization through UWB wave and TDOA algorithm is considered as the most accurate method until now. In implementing that method, configuration of base stations that serve as control points affects the localization accuracy. Thus, this paper discusses about optimal configuration of base stations. The variation in localization accuracy according to spatial relationship between an object and base stations Is mentioned through SEP also.

  • PDF

Visual Positioning System based on Voxel Labeling using Object Simultaneous Localization And Mapping

  • Jung, Tae-Won;Kim, In-Seon;Jung, Kye-Dong
    • International Journal of Advanced Culture Technology
    • /
    • v.9 no.4
    • /
    • pp.302-306
    • /
    • 2021
  • Indoor localization is one of the basic elements of Location-Based Service, such as indoor navigation, location-based precision marketing, spatial recognition of robotics, augmented reality, and mixed reality. We propose a Voxel Labeling-based visual positioning system using object simultaneous localization and mapping (SLAM). Our method is a method of determining a location through single image 3D cuboid object detection and object SLAM for indoor navigation, then mapping to create an indoor map, addressing it with voxels, and matching with a defined space. First, high-quality cuboids are created from sampling 2D bounding boxes and vanishing points for single image object detection. And after jointly optimizing the poses of cameras, objects, and points, it is a Visual Positioning System (VPS) through matching with the pose information of the object in the voxel database. Our method provided the spatial information needed to the user with improved location accuracy and direction estimation.

Analysis of Indoor Localization Technology for Exhibition Services and Application Method of VLC/RF Converged Localization (전시 서비스를 위한 실내 측위 기술 분석 및 VLC/RF 결합 측위 적용 방안)

  • Kim, Ki-Yun;Lee, Min-Woo;Cha, Jae-Sang
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.40 no.1
    • /
    • pp.217-225
    • /
    • 2015
  • Recently, as the supply of smart phone is spreading and the exhibition industries are rapidly growing, future exhibitions are evolving toward active, customized, interactive, tangible services, which can give more satisfaction to visitors. To realize this services, the indoor localization in the exhibition of visitors is very important and according to the accuracy of localization the quality of services for exhibition are also different. In this paper, state-of-the art indoor localization techniques are investigated and new localization method are proposed. To achieve this goal, future exhibition service types are proposed, which are connected with IT technology. And also, BLE(Bluetooth Low Energy) technology including comparison of specifications and representative localization technologies are analysed. Furthermore we performed comparison study and simulation between RF and VLC channels. Finally based on this, we proposed converged VLC and RF(Wi-Fi and BLE) localization technique for exhibition.

Measurement-based AP Deployment Mechanism for Fingerprint-based Indoor Location Systems

  • Li, Dong;Yan, Yan;Zhang, Baoxian;Li, Cheng;Xu, Peng
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.4
    • /
    • pp.1611-1629
    • /
    • 2016
  • Recently, deploying WiFi access points (APs) for facilitating indoor localization has attracted increasing attention. However, most existing mechanisms in this aspect are typically simulation based and further they did not consider how to jointly utilize pre-existing APs in target environment and newly deployed APs for achieving high localization performance. In this paper, we propose a measurement-based AP deployment mechanism (MAPD) for placing APs in target indoor environment for assisting fingerprint based indoor localization. In the mechanism design, MAPD takes full consideration of pre-existing APs to assist the selection of good candidate positions for deploying new APs. For this purpose, we first choose a number of candidate positions with low location accuracy on a radio map calibrated using the pre-existing APs and then use over-deployment and on-site measurement to determine the actual positions for AP deployment. MAPD uses minimal mean location error and progressive greedy search for actual AP position selection. Experimental results demonstrate that MAPD can largely reduce the localization error as compared with existing work.

A Model Stacking Algorithm for Indoor Positioning System using WiFi Fingerprinting

  • JinQuan Wang;YiJun Wang;GuangWen Liu;GuiFen Chen
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.17 no.4
    • /
    • pp.1200-1215
    • /
    • 2023
  • With the development of IoT and artificial intelligence, location-based services are getting more and more attention. For solving the current problem that indoor positioning error is large and generalization is poor, this paper proposes a Model Stacking Algorithm for Indoor Positioning System using WiFi fingerprinting. Firstly, we adopt a model stacking method based on Bayesian optimization to predict the location of indoor targets to improve indoor localization accuracy and model generalization. Secondly, Taking the predicted position based on model stacking as the observation value of particle filter, collaborative particle filter localization based on model stacking algorithm is realized. The experimental results show that the algorithm can control the position error within 2m, which is superior to KNN, GBDT, Xgboost, LightGBM, RF. The location accuracy of the fusion particle filter algorithm is improved by 31%, and the predicted trajectory is close to the real trajectory. The algorithm can also adapt to the application scenarios with fewer wireless access points.