• 제목/요약/키워드: indoor air, carbon dioxide ($CO_2$)

검색결과 76건 처리시간 0.026초

서울지역 공공청사 민원실의 겨울철 실내공기질에 관한 연구 (Study on Indoor Air Pollutants of Public Service Centers in Winter, Seoul)

  • 전재식;김미형;이주열;전명진;류인철;박덕신;최한영
    • 한국대기환경학회지
    • /
    • 제27권5호
    • /
    • pp.569-579
    • /
    • 2011
  • This study evaluated the indoor air quality of 26 government offices located in Seoul. The pollutant samples were taken from Jan. 13th to Jan. 29th and Feb. 20th to Feb. 23rd, 2010 in the offices. The target indoor pollutants for this study were $PM_{10}$, formaldehyde, carbon monoxide, carbon dioxide, total bacteria counts, total volatile organic compounds, radon, nitrogen dioxide, ozone, and asbestos which were controlled by the indoor air quality law for the multiple-use facilities management. The results of this study showed that some pollutants of the 38.5% offices exceeded the standards of the air quality guideline. The correlation analysis of the same pollutants between indoor and outdoor represented that $NO_2$ (r=0.629, p<0.05) and $O_3$ (r=0.459, p<0.01) were significant, however, $PM_{10}$ and CO were not. The correlation analysis between different pollutants showed that CO and TVOC (total volatile organic compounds: r=0.724; p<0.01), CO and $NO_2$ (r=0.674; p<0.01), HCHO and humidity (r=0.605; p<0.01), $CO_2$ and TVOC (r=0.534; p<0.01), TBC (total bacteria counts) and Asbestos (r=0.520; p<0.01) were significant. The energy-saving system of government buildings in winter caused under-ventilated and poor air quality. This study suggests that the concentrations of radon and $CO_2$ should be used as an indicator for monitoring indoor air quality and maintaining effective ventilations.

제올라이트계 이산화탄소 흡착제를 사용한 지하철 객실 내부의 이산화탄소 제거에 관한 연구 (Study on the Removal of Carbon Dioxide in the Subway Cabin Using Zeolite Type Carbon Dioxide Adsorbent)

  • 조영민;박덕신;권순박;이주열;황윤호
    • 한국철도학회논문집
    • /
    • 제14권1호
    • /
    • pp.1-5
    • /
    • 2011
  • 지하철 객실은 고농도의 이산화탄소로 오염되기 쉬운데, 이로 인하여 지하철 승객의 졸림, 두통, 무력감 등을 야기하기 쉽다. 이 때문에 환경부에서는 2007년에서는 열차와 지하철 객실의 이산화탄소 농도에 대한 가이드라인을 정한 바 있다. 본 연구에서는 지하철 객차용 이산화탄소 저감 시스템을 개발하고 실험용 객차를 이용하여 성능시험을 수행하였다. 다양한 종류의 개질 제올라이트를 이산화탄소 흡착제로 사용하여 지하철 객실 내부의 이산화탄소 농도를 저감할 수 있었다.

제올라이트 5A와 13X의 저농도 이산화탄소 흡착 및 탈착특성 (Adsorption and Desorption Characteristics of Carbon Dioxide at Low Concentration on Zeolite 5A and 13X)

  • 조영민;이지윤;권순박;박덕신;최진식;이주열
    • 한국대기환경학회지
    • /
    • 제27권2호
    • /
    • pp.191-200
    • /
    • 2011
  • A way to adsorptively remove indoor carbon dioxide at relatively lower concentration under ambient temperature was studied. A small lab-scale carbon dioxide adsorption and desorption reactors were prepared, and 5A and 13X zeolites were packed in this reactors to investigate their adsorption and desorption characteristics. The inflow carbon dioxide concentration was controlled to 5,000 ppm, relatively higher concentration found in indoor spaces with air quality problems, by diluting carbon dioxide with nitrogen gas. The flow rate was varied as 1~5 L/min, and the carbon dioxide concentration after this reactor was constantly monitored to examine the adsorption characteristics. It was found that 5A adsorbed more carbon dioxide than 13X. A lab-scale carbon dioxide desorption reactor was also prepared to investigate the desorption characteristics of zeolites, which is essential for the regeneration of used zeolites. The desorption temperature was varied as $25{\sim}200^{\circ}C$, and the desorption pressure was varied as 0.1~1.0 bar. Carbon dioxide desorbed better at higher temperature, and lower pressure. 5A could be regenerated more than three times by thermal desorption at $180^{\circ}C$. It is required to modify zeolites for higher adsorption and better regeneration performances.

Predicted Mean Vote(PMV)를 이용한 겨울철 종합병원의 실내 온·열 환경의 평가 (Assessment of Thermal Comfort in a General Hospital in Winter Using Predicted Mean Vote (PMV))

  • 이보람;김정훈;김규상;김혜진;이기영
    • 한국환경보건학회지
    • /
    • 제41권6호
    • /
    • pp.389-396
    • /
    • 2015
  • Objectives: A hospital is a complex building that serves many different purposes. It has a major impact on patient's well-being as well as on the work efficiency of the hospital staff. Thermal comfort is one of the major factors in indoor comfort. The purpose of this study was to determine thermal comfort in various locations in a hospital. Methods: Various indoor environmental conditions in a general hospital were measured in February 2014. The predicted mean vote (PMV) and carbon dioxide ($CO_2$) concentration were measured simultaneously in the lobby, office, restaurant, and ward. Results: The ward was the most thermally comfortable location (PMV=0.44) and the lobby was the most uncomfortable (PMV = -1.39). However, the $CO_2$ concentration was the highest in the ward (896 ppm) and the lowest in the lobby (572 ppm). The average PMV value was the most comfortable in the ward and the lowest in the lobby. In contrast, for concentration of carbon dioxide, the highest average was in the ward and the lowest in the lobby. Due to air conditioner operation, during operating hours the PMV showed values close to 0 compared to the non-operating time. Correlation between PMV and $CO_2$ differed by location. Conclusion: The PMV and concentration of carbon dioxide of the hospital lobby, office, restaurant and ward varied. The relationship between PMV and carbon dioxide differed by location. Consideration of how to apply PMV and carbon dioxide is needed when evaluating indoor comfort.

수도권 지하철 지하역사의 실내공기질 연구 (Study on the Air Quality of Metropolitan Subway Stations)

  • 조영민;박덕신;박병현;박은영
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2005년도 춘계학술대회 논문집
    • /
    • pp.77-82
    • /
    • 2005
  • Recently, people's rising interests toward a 'well-being' lifestyle together with research contributions are accelerating the concerns regarding indoor air pollution making indoor air quality management an emerging environmental challenge of the era. The Ministry of Environment began to regulate the air quality of railway stations last year. The newly established 'Indoor Air Quality Act' covers 17 facilities whereas only underground subway stations and underground markets were regulated by previous 'Underground Air Quality Management Act' of 1996. In this study, we carried out the measurement of temperature, relative humidity, CO(carbon monooxide), $CO_2$(carbon dioxide), HCHO(formaldehyde), PM-10(particulate matters), and VOCs(volatile organic compounds) in underground subway stations. Based on the obtained results, we will suggest a way to improve the indoor air quality of the subway stations.

  • PDF

업무용 빌딩 내 사무실의 실내공기질 평가 (Assessment of Indoor Air Quality in Commercial Office Buildings)

  • 정지연;이병규;피영규
    • 한국산업보건학회지
    • /
    • 제17권1호
    • /
    • pp.31-42
    • /
    • 2007
  • Recently, concerns regarding indoor air quality in offices have continued to increase. Thirty offices in five metropolitan commercial buildings were surveyed from February to April 2004. Sampling was performed during normal business hours. Thermal comfort factors such as temperature and relative humidity, carbon dioxide ($CO_2$), carbon monoxide (CO), formaldehyde (HCHO), respirable dust, $PM_{10}$ were sampled and analyzed to determine the mean, standard deviation, range, and correlation for each of those parameters. The data was then compared to office as standard of Ministry of Labor, and guideline applicable to the indoor environment. The results represented that the temperature was slightly higher than the standard of American Society of Refrigerating and Air-Conditioning Engineers (ASHRAE), the relative humidity was lower that the standard of ASHRAE. The range of the 8-TWA concentration of $CO_2$ was 639 ~ 786 ppm, but 33.3% of the total thirty offices exceeded the 1000 ppm as ceiling concentration. The concentration of CO was less than 3 ppm, which was similar to that of offices in Japanese. The mean concentration of formaldehyde was 0.032 ppm, and only 2 % of total samples (193) exceeded the 0.1 ppm, standard of formaldehyde in office air. The concentration of respirable dust and $PM_{10}$ was not exceeded the standard of those parameters, $150{\mu}g/m^3$. The concentration of those parameters in the office air was statistically correlated.

수면시 바닥표면온도에 따른 적정 환기량에 관한 연구 (A Study on the Proper Quantity of Ventilation through Changing Floor Temperature in Sleeping)

  • 김동규;이성;김세환
    • KIEAE Journal
    • /
    • 제10권1호
    • /
    • pp.19-24
    • /
    • 2010
  • Modern people are spending most of time in interior area. Indoor air environmental problem is one of the most effective factors influenceable to human health. Furthermore, saving energy and making ventilation system for pleasant indoor environment are necessary when it is faced shortage of energy over the world. In our country's case, it is already imposed that required quantity of air ventilation in buildings is 0.7 times per hour on "The regulation on building engineering system". As on the rise of the interests about Indoor air environment, Heat and Carbon dioxide emissions from User's metabolism, activity, furniture, and construction materials etc. could be the causes of Indoor air pollution. If these materials stays in Indoor air for so long, it could directly influence the user's health condition with a disease. As of building's sterilization improved that raised more mechanical ventilation. It also leads much energy waste in a period of high price of fossil fuel. Therefore, the way that saves energy and effective control of indoor ventilation is urgently needed. So, this study places the purpose on validating volume of indoor ventilation and user's comfortable degree by comparison CO2 emission rate through changing floor temperature.

$CO_2$ 직접 제거를 통한 다중이용시설의 에너지 절감 및 경제적 효과에 대한 실험적 연구 (Experimental studies of energy savings and economic effects by direct removal of carbon dioxide in the multi-use facility)

  • 김요섭;이주열;최진식;신재란;임윤희;박병현;김윤신
    • 한국응용과학기술학회지
    • /
    • 제31권3호
    • /
    • pp.466-471
    • /
    • 2014
  • It is important to develop the smart ventilation system in order to minimize a building energy consumption using ventilation. In this study, We evaluated the efficiency of the smart ventilation system being developed at the nursery. To evaluate the energy savings and carbon dioxide removal efficiency, two kinds of experimental conditions were compared. First, air conditioner and Smart HVAC system were operated. Second, air conditioner was operating and external air was put into the inside by rate of air circulation. It was more effective when working with air conditioning and ventilation system at the same time. If the Smart HVAC system is applied in a multi-use facility, indoor air quality will be comfortable and the social cost will be reduced.

KTX 객실내 공기청정도 측정 (The Measurement of the Indoor Air Quality in KTX Train)

  • 소진섭;이성욱;박덕신;유성연
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 2006년도 추계학술대회 논문집
    • /
    • pp.1210-1213
    • /
    • 2006
  • Indoor air quality is an important determinant of human health and comfort. However, the complexity of pollution sources and the multitude of parties responsible for creating indoor exposures makes the improvement of air quality difficult. The KTX HVAC(Heating, Ventilating and Air-Conditioning) system is important facility to provide comfortable environment passenger service. The Ministry of Environment is planning to enforce$\square\square$Indoor Air Quality Management law in Public Facilities$\square\square$in year 2008. Hereupon, the train and the subway are included. In this research air quality in the KTX Train compartment has measured. As a result, The average amounts of PM10(particulate matters), $CO_2$(carbon dioxide)measured $20{\mu}g/m^3$, 1,097ppm in KTX respectively. There are compare to regulation the value is 10% for PM10 and 43% for $CO_2$. Thus, the indoor air quality of KTX train have been proved satisfy the recommendation the Ministry of Environment guidelines.

  • PDF

식물을 이용한 실내공기조절시 이산화탄소의 영향에 관한 연구 (A Study on the Effect of CO2 in Condition of Indoor Air Quality Control Using Plants)

  • 이규인;권민재
    • KIEAE Journal
    • /
    • 제7권4호
    • /
    • pp.39-44
    • /
    • 2007
  • The purpose of this research is to study security of $CO_2$ exhaust at night in indoor air quality purifying system using plants. For this purpose, two same units for experiment were built, and difference of $CO_2$ exhaust by existence and nonexistence of plantation were measured. To reduce error by entrance of people, automatic measurement system were developed and used. At first, baseline were measured to check standard value, and next, $CO_2$ exhaust by plantation were measured. As a result, in baseline experiment, values of all spaces were steady as 400~500 ppm. When plantation was set-up, value of $CO_2$ at night was measured high as 150 ppm, and maximum value was around 600 ppm. This result is a lot lower than maximum standard of $CO_2$, 1000 ppm.