• Title/Summary/Keyword: individual learning

Search Result 1,657, Processing Time 0.029 seconds

Importance of Enjoyment Method in Classic Poetry Education and its Methodological Study (고전시가 교육에 있어 향유 방식의 중요성과 그 방법론적 탐색)

  • Park, Kyeong-Ju
    • Journal of Korean Classical Literature and Education
    • /
    • no.38
    • /
    • pp.5-35
    • /
    • 2018
  • This paper discusses this seminar's theme, 'Classic Literature Enjoyment Methods and Education,' with a focus on the genre of classic poems. However it does not focus on any individual method by discussing a specific genre or enjoyment method but focuses on a fundamental discussion. The importance of a functional relationship between the classic poetry genre and its enjoyment method is raised avoiding a generalized discussion. There are things that researchers often forget about classic poems. They forget that most classic poems are not ordinary poems but songs that are to be sung, and thus they should, in principle, be expressed in Korean language. These two facts about classic poems, indicate that their enjoyment method should be given importance. Compared to modern poems, Chinese classic poems, folk songs, and other forms of verse, only classic poems have the aforementioned conditions unique to them. In addition, classic poems include several types of poems, Japga (literally, miscellaneous songs), and Siga (literally, poem-song) genres representing each era, so it is important to discuss the characteristics of such poems with respect to their times periods and genres. Even based on such characteristics, the enjoyment situation where works are created and sung in the genre of classic poems is very important, and thus the enjoyment method issue should be closely linked with the study of works and genres. This study examines how the topics of enjoyment methods for classic poems is reflected in the current middle education curriculum. To improve the current situation, it outlines the issues that arise when enjoyment methods for classic poems are applied to textbooks or classes, set as textbook unit goals or criteria for achievement, and presented as measures designed to plan the composition of works and learning activities. Future studies on literary educational methodologies are expected to further examine the enjoyment methods for poems in class discussed herein.

Preliminary Inspection Prediction Model to select the on-Site Inspected Foreign Food Facility using Multiple Correspondence Analysis (차원축소를 활용한 해외제조업체 대상 사전점검 예측 모형에 관한 연구)

  • Hae Jin Park;Jae Suk Choi;Sang Goo Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.1
    • /
    • pp.121-142
    • /
    • 2023
  • As the number and weight of imported food are steadily increasing, safety management of imported food to prevent food safety accidents is becoming more important. The Ministry of Food and Drug Safety conducts on-site inspections of foreign food facilities before customs clearance as well as import inspection at the customs clearance stage. However, a data-based safety management plan for imported food is needed due to time, cost, and limited resources. In this study, we tried to increase the efficiency of the on-site inspection by preparing a machine learning prediction model that pre-selects the companies that are expected to fail before the on-site inspection. Basic information of 303,272 foreign food facilities and processing businesses collected in the Integrated Food Safety Information Network and 1,689 cases of on-site inspection information data collected from 2019 to April 2022 were collected. After preprocessing the data of foreign food facilities, only the data subject to on-site inspection were extracted using the foreign food facility_code. As a result, it consisted of a total of 1,689 data and 103 variables. For 103 variables, variables that were '0' were removed based on the Theil-U index, and after reducing by applying Multiple Correspondence Analysis, 49 characteristic variables were finally derived. We build eight different models and perform hyperparameter tuning through 5-fold cross validation. Then, the performance of the generated models are evaluated. The research purpose of selecting companies subject to on-site inspection is to maximize the recall, which is the probability of judging nonconforming companies as nonconforming. As a result of applying various algorithms of machine learning, the Random Forest model with the highest Recall_macro, AUROC, Average PR, F1-score, and Balanced Accuracy was evaluated as the best model. Finally, we apply Kernal SHAP (SHapley Additive exPlanations) to present the selection reason for nonconforming facilities of individual instances, and discuss applicability to the on-site inspection facility selection system. Based on the results of this study, it is expected that it will contribute to the efficient operation of limited resources such as manpower and budget by establishing an imported food management system through a data-based scientific risk management model.

GEase-K: Linear and Nonlinear Autoencoder-based Recommender System with Side Information (GEase-K: 부가 정보를 활용한 선형 및 비선형 오토인코더 기반의 추천시스템)

  • Taebeom Lee;Seung-hak Lee;Min-jeong Ma;Yoonho Cho
    • Journal of Intelligence and Information Systems
    • /
    • v.29 no.3
    • /
    • pp.167-183
    • /
    • 2023
  • In the recent field of recommendation systems, various studies have been conducted to model sparse data effectively. Among these, GLocal-K(Global and Local Kernels for Recommender Systems) is a research endeavor combining global and local kernels to provide personalized recommendations by considering global data patterns and individual user characteristics. However, due to its utilization of kernel tricks, GLocal-K exhibits diminished performance on highly sparse data and struggles to offer recommendations for new users or items due to the absence of side information. In this paper, to address these limitations of GLocal-K, we propose the GEase-K (Global and EASE kernels for Recommender Systems) model, incorporating the EASE(Embarrassingly Shallow Autoencoders for Sparse Data) model and leveraging side information. Initially, we substitute EASE for the local kernel in GLocal-K to enhance recommendation performance on highly sparse data. EASE, functioning as a simple linear operational structure, is an autoencoder that performs highly on extremely sparse data through regularization and learning item similarity. Additionally, we utilize side information to alleviate the cold-start problem. We enhance the understanding of user-item similarities by employing a conditional autoencoder structure during the training process to incorporate side information. In conclusion, GEase-K demonstrates resilience in highly sparse data and cold-start situations by combining linear and nonlinear structures and utilizing side information. Experimental results show that GEase-K outperforms GLocal-K based on the RMSE and MAE metrics on the highly sparse GoodReads and ModCloth datasets. Furthermore, in cold-start experiments divided into four groups using the GoodReads and ModCloth datasets, GEase-K denotes superior performance compared to GLocal-K.

Changes in Perceptions of Science Classes Using Artificial Intelligence among Elementary Teachers Participating in Research School (연구학교 참여 초등교사의 인공지능 활용 과학 수업에 관한 인식 변화)

  • Kim, Tae Ha;Yoon, Hye-Gyoung
    • Journal of Korean Elementary Science Education
    • /
    • v.42 no.3
    • /
    • pp.467-479
    • /
    • 2023
  • For the successful implementation of education using artificial intelligence (AI) in schools, the perception of teachers is important. This study focuses on elementary school teachers and their perception of the need and teaching efficacy of science classes using AI before and after participating in a research school program. The analysis explores four key aspects, namely, learning, teaching, assessment, and communication. The study recruited 24 elementary school teachers from a school designated by the Gangwon Provincial Office of Education to participate in a year-long research school program. The study collected data using pre- and post-program surveys to explore changes in the perception of teachers regarding AI-based science classes. Furthermore, the researchers conducted individual in-depth interviews with four elementary school teachers to investigate the experience factors that influenced the changes in their perception of the aforementioned classes. The main findings were as follows. First, elementary school teachers were positively aware of the need for science classes using AI even prior to their research school experience; this perception remained positive after the research school program. Second, the science teaching efficacy of the elementary school teachers using AI was generally moderate. Even after the research school experience, the study found no statistically significant increase in efficacy in teaching science using AI. Third, by analyzing the necessity-efficacy as quadrants, the study observed that approximately half of the teachers who participated in the research school reported positive changes in learning, teaching, and assessment. Fourth, the study extracted four important experience factors that influenced the perception of the teachers of science classes using AI, namely, personal background and characteristics, personal class practice experience, teacher community activities, and administration and work of school. Furthermore, the study discussed the implications of these results in terms of the operation of research schools and science education using AI in elementary schools.

Steel Plate Faults Diagnosis with S-MTS (S-MTS를 이용한 강판의 표면 결함 진단)

  • Kim, Joon-Young;Cha, Jae-Min;Shin, Junguk;Yeom, Choongsub
    • Journal of Intelligence and Information Systems
    • /
    • v.23 no.1
    • /
    • pp.47-67
    • /
    • 2017
  • Steel plate faults is one of important factors to affect the quality and price of the steel plates. So far many steelmakers generally have used visual inspection method that could be based on an inspector's intuition or experience. Specifically, the inspector checks the steel plate faults by looking the surface of the steel plates. However, the accuracy of this method is critically low that it can cause errors above 30% in judgment. Therefore, accurate steel plate faults diagnosis system has been continuously required in the industry. In order to meet the needs, this study proposed a new steel plate faults diagnosis system using Simultaneous MTS (S-MTS), which is an advanced Mahalanobis Taguchi System (MTS) algorithm, to classify various surface defects of the steel plates. MTS has generally been used to solve binary classification problems in various fields, but MTS was not used for multiclass classification due to its low accuracy. The reason is that only one mahalanobis space is established in the MTS. In contrast, S-MTS is suitable for multi-class classification. That is, S-MTS establishes individual mahalanobis space for each class. 'Simultaneous' implies comparing mahalanobis distances at the same time. The proposed steel plate faults diagnosis system was developed in four main stages. In the first stage, after various reference groups and related variables are defined, data of the steel plate faults is collected and used to establish the individual mahalanobis space per the reference groups and construct the full measurement scale. In the second stage, the mahalanobis distances of test groups is calculated based on the established mahalanobis spaces of the reference groups. Then, appropriateness of the spaces is verified by examining the separability of the mahalanobis diatances. In the third stage, orthogonal arrays and Signal-to-Noise (SN) ratio of dynamic type are applied for variable optimization. Also, Overall SN ratio gain is derived from the SN ratio and SN ratio gain. If the derived overall SN ratio gain is negative, it means that the variable should be removed. However, the variable with the positive gain may be considered as worth keeping. Finally, in the fourth stage, the measurement scale that is composed of selected useful variables is reconstructed. Next, an experimental test should be implemented to verify the ability of multi-class classification and thus the accuracy of the classification is acquired. If the accuracy is acceptable, this diagnosis system can be used for future applications. Also, this study compared the accuracy of the proposed steel plate faults diagnosis system with that of other popular classification algorithms including Decision Tree, Multi Perception Neural Network (MLPNN), Logistic Regression (LR), Support Vector Machine (SVM), Tree Bagger Random Forest, Grid Search (GS), Genetic Algorithm (GA) and Particle Swarm Optimization (PSO). The steel plates faults dataset used in the study is taken from the University of California at Irvine (UCI) machine learning repository. As a result, the proposed steel plate faults diagnosis system based on S-MTS shows 90.79% of classification accuracy. The accuracy of the proposed diagnosis system is 6-27% higher than MLPNN, LR, GS, GA and PSO. Based on the fact that the accuracy of commercial systems is only about 75-80%, it means that the proposed system has enough classification performance to be applied in the industry. In addition, the proposed system can reduce the number of measurement sensors that are installed in the fields because of variable optimization process. These results show that the proposed system not only can have a good ability on the steel plate faults diagnosis but also reduce operation and maintenance cost. For our future work, it will be applied in the fields to validate actual effectiveness of the proposed system and plan to improve the accuracy based on the results.

A Study on People Counting in Public Metro Service using Hybrid CNN-LSTM Algorithm (Hybrid CNN-LSTM 알고리즘을 활용한 도시철도 내 피플 카운팅 연구)

  • Choi, Ji-Hye;Kim, Min-Seung;Lee, Chan-Ho;Choi, Jung-Hwan;Lee, Jeong-Hee;Sung, Tae-Eung
    • Journal of Intelligence and Information Systems
    • /
    • v.26 no.2
    • /
    • pp.131-145
    • /
    • 2020
  • In line with the trend of industrial innovation, IoT technology utilized in a variety of fields is emerging as a key element in creation of new business models and the provision of user-friendly services through the combination of big data. The accumulated data from devices with the Internet-of-Things (IoT) is being used in many ways to build a convenience-based smart system as it can provide customized intelligent systems through user environment and pattern analysis. Recently, it has been applied to innovation in the public domain and has been using it for smart city and smart transportation, such as solving traffic and crime problems using CCTV. In particular, it is necessary to comprehensively consider the easiness of securing real-time service data and the stability of security when planning underground services or establishing movement amount control information system to enhance citizens' or commuters' convenience in circumstances with the congestion of public transportation such as subways, urban railways, etc. However, previous studies that utilize image data have limitations in reducing the performance of object detection under private issue and abnormal conditions. The IoT device-based sensor data used in this study is free from private issue because it does not require identification for individuals, and can be effectively utilized to build intelligent public services for unspecified people. Especially, sensor data stored by the IoT device need not be identified to an individual, and can be effectively utilized for constructing intelligent public services for many and unspecified people as data free form private issue. We utilize the IoT-based infrared sensor devices for an intelligent pedestrian tracking system in metro service which many people use on a daily basis and temperature data measured by sensors are therein transmitted in real time. The experimental environment for collecting data detected in real time from sensors was established for the equally-spaced midpoints of 4×4 upper parts in the ceiling of subway entrances where the actual movement amount of passengers is high, and it measured the temperature change for objects entering and leaving the detection spots. The measured data have gone through a preprocessing in which the reference values for 16 different areas are set and the difference values between the temperatures in 16 distinct areas and their reference values per unit of time are calculated. This corresponds to the methodology that maximizes movement within the detection area. In addition, the size of the data was increased by 10 times in order to more sensitively reflect the difference in temperature by area. For example, if the temperature data collected from the sensor at a given time were 28.5℃, the data analysis was conducted by changing the value to 285. As above, the data collected from sensors have the characteristics of time series data and image data with 4×4 resolution. Reflecting the characteristics of the measured, preprocessed data, we finally propose a hybrid algorithm that combines CNN in superior performance for image classification and LSTM, especially suitable for analyzing time series data, as referred to CNN-LSTM (Convolutional Neural Network-Long Short Term Memory). In the study, the CNN-LSTM algorithm is used to predict the number of passing persons in one of 4×4 detection areas. We verified the validation of the proposed model by taking performance comparison with other artificial intelligence algorithms such as Multi-Layer Perceptron (MLP), Long Short Term Memory (LSTM) and RNN-LSTM (Recurrent Neural Network-Long Short Term Memory). As a result of the experiment, proposed CNN-LSTM hybrid model compared to MLP, LSTM and RNN-LSTM has the best predictive performance. By utilizing the proposed devices and models, it is expected various metro services will be provided with no illegal issue about the personal information such as real-time monitoring of public transport facilities and emergency situation response services on the basis of congestion. However, the data have been collected by selecting one side of the entrances as the subject of analysis, and the data collected for a short period of time have been applied to the prediction. There exists the limitation that the verification of application in other environments needs to be carried out. In the future, it is expected that more reliability will be provided for the proposed model if experimental data is sufficiently collected in various environments or if learning data is further configured by measuring data in other sensors.

Development of a Stock Trading System Using M & W Wave Patterns and Genetic Algorithms (M&W 파동 패턴과 유전자 알고리즘을 이용한 주식 매매 시스템 개발)

  • Yang, Hoonseok;Kim, Sunwoong;Choi, Heung Sik
    • Journal of Intelligence and Information Systems
    • /
    • v.25 no.1
    • /
    • pp.63-83
    • /
    • 2019
  • Investors prefer to look for trading points based on the graph shown in the chart rather than complex analysis, such as corporate intrinsic value analysis and technical auxiliary index analysis. However, the pattern analysis technique is difficult and computerized less than the needs of users. In recent years, there have been many cases of studying stock price patterns using various machine learning techniques including neural networks in the field of artificial intelligence(AI). In particular, the development of IT technology has made it easier to analyze a huge number of chart data to find patterns that can predict stock prices. Although short-term forecasting power of prices has increased in terms of performance so far, long-term forecasting power is limited and is used in short-term trading rather than long-term investment. Other studies have focused on mechanically and accurately identifying patterns that were not recognized by past technology, but it can be vulnerable in practical areas because it is a separate matter whether the patterns found are suitable for trading. When they find a meaningful pattern, they find a point that matches the pattern. They then measure their performance after n days, assuming that they have bought at that point in time. Since this approach is to calculate virtual revenues, there can be many disparities with reality. The existing research method tries to find a pattern with stock price prediction power, but this study proposes to define the patterns first and to trade when the pattern with high success probability appears. The M & W wave pattern published by Merrill(1980) is simple because we can distinguish it by five turning points. Despite the report that some patterns have price predictability, there were no performance reports used in the actual market. The simplicity of a pattern consisting of five turning points has the advantage of reducing the cost of increasing pattern recognition accuracy. In this study, 16 patterns of up conversion and 16 patterns of down conversion are reclassified into ten groups so that they can be easily implemented by the system. Only one pattern with high success rate per group is selected for trading. Patterns that had a high probability of success in the past are likely to succeed in the future. So we trade when such a pattern occurs. It is a real situation because it is measured assuming that both the buy and sell have been executed. We tested three ways to calculate the turning point. The first method, the minimum change rate zig-zag method, removes price movements below a certain percentage and calculates the vertex. In the second method, high-low line zig-zag, the high price that meets the n-day high price line is calculated at the peak price, and the low price that meets the n-day low price line is calculated at the valley price. In the third method, the swing wave method, the high price in the center higher than n high prices on the left and right is calculated as the peak price. If the central low price is lower than the n low price on the left and right, it is calculated as valley price. The swing wave method was superior to the other methods in the test results. It is interpreted that the transaction after checking the completion of the pattern is more effective than the transaction in the unfinished state of the pattern. Genetic algorithms(GA) were the most suitable solution, although it was virtually impossible to find patterns with high success rates because the number of cases was too large in this simulation. We also performed the simulation using the Walk-forward Analysis(WFA) method, which tests the test section and the application section separately. So we were able to respond appropriately to market changes. In this study, we optimize the stock portfolio because there is a risk of over-optimized if we implement the variable optimality for each individual stock. Therefore, we selected the number of constituent stocks as 20 to increase the effect of diversified investment while avoiding optimization. We tested the KOSPI market by dividing it into six categories. In the results, the portfolio of small cap stock was the most successful and the high vol stock portfolio was the second best. This shows that patterns need to have some price volatility in order for patterns to be shaped, but volatility is not the best.

Development and Application of Earth Science Module Based on Earth System (지구계 주제 중심의 지구과학 모듈 개발 및 적용)

  • Lee, Hyo-Nyong;Kwon, Young-Ryun
    • Journal of the Korean earth science society
    • /
    • v.29 no.2
    • /
    • pp.175-188
    • /
    • 2008
  • The purposes of this study were to develop an Earth systems-based earth science module and to investigate the effects of field application. The module was applied to two classrooms of a total of 76 second-year high schoolers, in order to investigate the effectiveness of the developed module. Data was collected from observations in earth science classrooms, interviews, and questionnaires. The findings were as follows. First, the Earth systems-based earth science module was designed to be associated with the aims of the national Earth Science Curriculum and to improve students' Earth science literacy. The module was composed of two sections for a total of seven instructional hours for high schoolers. The former sections included the understanding of the Earth system through the understanding of each individual component of the system, its characteristics, properties and structure. The latter section of the module, consisting of 4 instructional hours, dealt with earth environmental problems, the understanding of subsystems changing through natural processes and cycles, and human interactions and their effects upon Earth systems. Second, the module was helpful in learning about the importance of understanding the interactions between water, rock, air, and life when it comes to understanding the Earth system, its components, characteristics, and properties. The Earth systems-based earth science module is a valuable and helpful instructional material which can enhance students' understanding of Earth systems and earth science literacy.

A Research Regarding the Application and Development of Web Contents Data in Home Economics (가정과 수업의 웹 콘텐츠 자료 활용 및 개발에 관한 연구)

  • Kim Mi-Suk;Wee Eun-Hah
    • Journal of Korean Home Economics Education Association
    • /
    • v.18 no.1 s.39
    • /
    • pp.49-64
    • /
    • 2006
  • The objective of this research is to see the current status of application and development of web contents data, and to suggest the way to improve the application and development of web contents data in home economics classes in middle schools. The respondents of the research were 312 middle school home economics teachers from all over the nation, and the tool was a questionnaire which consist of 22 questions about general status of the person who was answering and their recognitions and demands on the application and development of the web contents data. The major findings were as follows : 1) 88.5% of the sample responded that they accurately grasped a meaning of a class employing web contents data, and as for effects on preparation of professional study. 2) Most of the teachers were making good use of materials from the web in their classes. They responded that it maximized the efficiency of students' learning. Some didn't use the web contents in their classes. The reasons why the web contents data usage had been low were that the classrooms were not equipped properly (43.2%) and it took long time to create web contests (37.8%). 3) Kinds of web contents data that showed the most amount of usage were the presentations (48.4%), multi-media teaching materials(23.7%), and moving pictures(19.9%). 4) Teaches wanted to improve these particular materials among the web contents: family life and home, administration and environment of resources, and clothing preparation and administration. As for the lessons, teachers wanted developments of contents of lessons, generating motives, and evaluation to be by individual teachers or curriculum researchers' societies, and 30.8% were by Korea Education & Research Information Service (KERIS).

  • PDF

A Study on Outplacement Countermeasure and Retention Level Examination Analysis about Outplacement Competency of Special Security Government Official (특정직 경호공무원의 전직역량에 대한 보유수준 분석 및 전직지원방안 연구)

  • Kim, Beom-Seok
    • Korean Security Journal
    • /
    • no.33
    • /
    • pp.51-80
    • /
    • 2012
  • This study is to summarize main contents which was mentioned by Beomseok Kim' doctoral dissertation. The purpose of this study focuses on presenting the outplacement countermeasure and retention level examination analysis about outplacement competency of special security government official through implement of questionnaire method. The questionnaire for retention level examination including four groups of outplacement competency and twenty subcategories was implemented in the object of six hundered persons relevant to outplacement more than forty age and five grade administration official of special security government officials, who have outplacement experiences as outplacement successors, outplacement losers, and outplacement expectants, in order to achieve this research purpose effectively. The questionnaire examination items are four groups of outplacement competency and twenty subcategories which are the group of knowledge competency & four subcategories including expert knowledge, outplacement knowledge, self comprehension, and organization comprehension, the group of skill competency & nine subcategories including job skill competency, job performance skill, problem-solving skill, reforming skill, communication skill, organization management skill, crisis management skill, career development skill, and human network application skill, the group of attitude-emotion competency & seven subcategories including positive attitude, active attitude, responsibility, professionalism, devoting-sacrificing attitude, affinity, and self-controlling ability, and the group of value-ethics competency & two subcategories including ethical consciousness and morality. The respondents highly regard twenty-two outplacement competency and they consider themselves well-qualified for the subcategories valued over 4.0 such as the professional knowledge, active attitude, responsibility, ethics and morality while they mark the other subcategories below average still need to be improved. Thus, the following is suggestions for successful outplacement. First, individual effort is essential to strengthen their capabilities based on accurate self evaluation, for which the awareness and concept need to be redefined to help them face up to the reality by readjusting career goal to a realistic level. Second, active career development plan to improve shortcoming in terms of outplacement competency is required. Third, it is necessary to establish the infrastructure related to outplacement training such as ON-OFF Line training system and facilities for learning to reinforce user-oriented outplacement training as a regular training course before during after the retirement.

  • PDF