• 제목/요약/키워드: individual dose

검색결과 349건 처리시간 0.023초

진단용 방사성동위원소 취급 시 L-block 차폐기구 사용에 따른 핵의학 종사자의 장기 선량평가 (Organ Dose Assessment of Nuclear Medicine Practitioners Using L-Block Shielding Device for Handling Diagnostic Radioisotopes)

  • 강세식;조용인;김정훈
    • 대한방사선기술학회지:방사선기술과학
    • /
    • 제40권1호
    • /
    • pp.49-55
    • /
    • 2017
  • 의료기관 내 핵의학 종사자는 방사성동위원소 취급 시 사용하는 선원의 종류, 방사능량, 차폐기구의 사용 여부에 따라 종사자 개인별로 광범위한 피폭선량을 나타낼 수 있다. 이에 본 연구에서는 몬테카를로 기법을 기반으로 한 모의실험을 통해 진단용 방사선원 취급 시 종사자의 장기별 선량평가와 L-block 차폐기구 사용에 따른 선량감소효과를 분석하였다. 그 결과, 방사선원의 취급 위치에 근접할수록 높은 장기선량 분포를 나타내었고, ICRP 조직가중치에 따라 유효선량 분포가 상이한 양상을 보였다. 또한 L-block 두께에 따른 선량감소효과는 차폐두께 증가에 따라 지수함수 분포로 감소되는 경향을 나타내었으며, 방사선원별 선량감소효과는 방출하는 감마선 에너지에 비례하여 낮은 차폐효과를 보였다.

원자력발전소 계획예방정비 기간중 피폭최적화 경험 (The Optimization Experience of Occupational Exposure during Unclear Power Plant Outage)

  • 송영일;김형진;박헌국;김희근
    • Journal of Radiation Protection and Research
    • /
    • 제28권2호
    • /
    • pp.145-154
    • /
    • 2003
  • By optimizing the radiation protection the collective dose and individual dose could be reduced during YGN #4 $5^{th}$ outage in 2001. The collective doses for the two high radiation jobs decreased to 85% and 65% of expected doses. The proportion of workers with low dose (below 1mSv) exposure increased 4% while the proportion of workers with over 3mSv and 5mSv exposure are decreased to 2%, 1% respectively. But none is exposed over 8mSv for the annual dose. To aid decision of utilizing the robot, cost- benefit analysis was performed and reasonable point was proposed to use the robot. For the first time job, repeated ALARA meeting and mock up training were implemented to set up working procedure by identifying the trouble. To easily set up standard procedure, mockup process was videotaped and reviewed during ALARA meeting. Monitoring is a good approach to chase radiological working condition such as working time, dose rate. behavior of workers, especially for high radiation work. Those data were estimated and adjusted from the stage of work planning to mock up. At the stage of actual work the monitoring data were compared to the estimation and recorded to database. This database will not only be used as a powerful tool for dose optimization at the following outage but also as a guideline to dose constraint set up for optimization for each specific situation.

6MV 광자선에서 측정조건의 변화와 측정법의 차이에 의한 절대 선량값의 비교 (The Comparison of Absolute Dose due to Differences of Measurement Condition and Calibration Protocols for Photon Beams)

  • 김회남
    • 대한방사선치료학회지
    • /
    • 제10권1호
    • /
    • pp.11-22
    • /
    • 1998
  • The absolute absorbed dose can be determined according to the measurement conditions ; measurement material, detector, energy and calibration protocols. The purpose of this study is to compare the absolute absorbed dose due to the differences of measurement condition and calibration protocols for photon beams. Dosimetric measurements were performed with a farmer type PTW and NEL ionization chambers in water, solid water, and polystyrene phantoms using 6MV photon beams from Siemens linear accelerator. Measurements were made along the central axis of $10{\times}10cm$ field size for constant target to surface distance of 100cm for water, solid water and polystyrene phantom. Theoretical absorbed dose intercomparisons between TG21 and IAEA protocol were performed for various measurement combinations on phantom, ion chamber, and electrometer. There were no significant differences of absorbed dose value between TG2l and IAEA protocol. The differences between two protocols are within $1\%\;while\;the\;average\;value\;of\;IAEA\;protocol\;was\;0.5\%$ smaller than TG2l protocol. For the purpose of comparison, all the relative absorbed dose were nomalized to NEL ion chamber with Keithley electrometer and water phantom, The average differences are within $1\%,\;but\;individual\;discrepancies\;are\;in\;the\;range\;of\;-2.5\%\;to\;1.2\%$ depending upon the choice of measurement combination. The largest discrepancy of $-25\%$ was observed when NEL ion chamber with Keithley electrometer is used in solid water phantom. The main cause for this discrepancy is due to the use of same parameters of stopping power, absorption coefficient, etc. as used in water phantom. It should be mentioned that the solid water phantom is not recommended for absolute dose calibration as the alternative of water, since absorbed dose show some dependency on phantom material other than water. In conclusion, the trend of variation was not much dependent on calibration protocol. However, It shows that absorbed dose could be affected by phantom material other than water.

  • PDF

PIXEL-BASED CORRECTION METHOD FOR GAFCHROMIC®EBT FILM DOSIMETRY

  • Jeong, Hae-Sun;Han, Young-Yih;Kum, O-Yeon;Kim, Chan-Hyeong;Ju, Sang-Gyu;Shin, Jung-Suk;Kim, Jin-Sung;Park, Joo-Hwan
    • Nuclear Engineering and Technology
    • /
    • 제42권6호
    • /
    • pp.670-679
    • /
    • 2010
  • In this paper, a new approach using a pixel-based correction method was developed to fix the non-uniform responses of flat-bed type scanners used for radiochromic film dosimetry. In order to validate the method's performance, two cases were tested: the first consisted of simple dose distributions delivered by a single port; the second was a complicated dose distribution composed of multiple beams. In the case of the simple individual dose condition, ten different doses, from 8.3 cGy to 307.1 cGy, were measured, horizontal profiles were analyzed using the pixel-based correcton method and compared with results measured by an ionization chamber and results corrected using the existing correction method. A complicated inverse pyramid dose distribution was made by piling up four different field shapes, which were measured with GAFCHROMIC$^{(R)}$EBT film and compared with the Monte Carlo calculation; as well as the dose distribution corrected using a conventional method. The results showed that a pixel-based correction method reduced dose difference from the reference measurement down to 1% in the flat dose distribution region or 2 mm in a steep dose gradient region compared to the reference data, which were ionization chamber measurement data for simple cases and the MC computed data for the complicated case, with an exception for very low doses of less than about 10 cGy in the simple case. Therefore, the pixel-based scanner correction method is expected to enhance the accuracy of GAFCHROMIC$^{(R)}$EBT film dosimetry, which is a widely used tool for two-dimensional dosimetry.

X-band EPR dosimetry using minimum mass of tooth enamel for use in radiological accidents

  • Jae Seok Kim;Byeong Ryong Park;Han Sung Kim;In Mo Eo;Jaeryong Yoo;Won Il Jang;Minsu Cho;HyoJin Kim;Yong Kyun Kim
    • Nuclear Engineering and Technology
    • /
    • 제56권1호
    • /
    • pp.123-131
    • /
    • 2024
  • Electron paramagnetic resonance (EPR) dosimetry for a tooth from an individual exposed is well known as retrospective dosimetry in radiological accidents. A major constraint of the conventional X-band tooth-EPR dosimetry is the necessity to extract the tooth of the exposed patient for dose assessment. In this study, to conduct the dose assessments of exposed patients through part-extraction of tooth enamel, the minimum detectable dose (MDD) of the tooth enamel was evaluated based on the amount of mass. Further, a field test was conducted via intercomparison using various dose assessment methods to verify the feasibility of X-band tooth-EPR dosimetry using the minimum mass of tooth enamel. The intercomparison results demonstrated that effective dose determination via X-band tooth-EPR dosimetry is reliable. Consequently, it was determined that the minimum mass of tooth enamel required to evaluate an absorbed dose above 0.5 Gy is 15 mg. Thus, EPR dosimetry using 15 mg of tooth enamel can be applied in the triage and initial medical response stages for patients exposed during radiological accidents. This approach represents an advancement in managing radiological accidents by offering a more efficient and less invasive method of dose assessment.

BENCHMARK CALCULATION OF CANDU END SHIELDING SYSTEM

  • Gyuhong Roh;Park, Hangbok
    • 한국원자력학회:학술대회논문집
    • /
    • 한국원자력학회 1998년도 춘계학술발표회논문집(2)
    • /
    • pp.618-623
    • /
    • 1998
  • A shielding analysis was performed for the end shield of CANDU 6 reactor. The one-dimensional discrete ordinate code ANISN with a 38-group neutron-gamma library, extracted from DLC-37D library, was used to estimate the dose rate for the natural uranium CANDU reactor. For comparison MCNP-4B calculation was performed for the same system using continuous, discrete and multi-group libraries. The comparison has shown that the total dose rate of the ANISN calculation agrees well with that of the MCNP calculation. However, the individual dose rate (neutron and gamma) has shown opposite trends between AMISN and MCNP estimates, which may require a consistent library generation for both codes.

  • PDF

Important Radionuclides and Their Sensitivity for Ground water Pathway of a Hypothetical Near-Surface Disposal Facility

  • Park, J. W.;K. Chang;Kim, C. L.
    • Nuclear Engineering and Technology
    • /
    • 제33권2호
    • /
    • pp.156-165
    • /
    • 2001
  • A radiological safety assessment was performed for a hypothetical near-surface radioactive waste repository as a simple screening calculation to identify important nuclides and to provide insights on the data needs for a successful demonstration of compliance. Individual effective doses were calculated for a conservative ground water pathway scenario considering well drilling near the site boundary. Sensitivity of resulting ingestion dose to input parameter values was also analyzed using Monte Carlo sampling. Considering peak dose rate and assessment time scale, C-14 and T-129 were identified as important nuclides and U-235 and U-238 as potentially important nuclides. For C-14, the dose was most sensitive to Darcy velocity in aquifer The distribution coefficient showed high degree of sensitivity for I-129 release.

  • PDF

수술 후 갑상선기능저하가 동반된 고도비만환자의 펜터민염산염/토피라메이트의 저용량 오프라벨 사용 (Low-Dose Off-Label Use of Phentermine/Topiramate in the Individual with Morbid Obesity and Postoperative Hypothyroidism)

  • 박정하
    • 비만대사연구학술지
    • /
    • 제1권1호
    • /
    • pp.43-45
    • /
    • 2022
  • Intensive lifestyle modifications and anti-obesity medications are essential for obesity treatment. Antiobesity medications should be selected according to the patient's comorbidities, symptoms, and preferences. This case report describes the treatment of a morbidly obese patient with a history of depression, who complained of tingling and numbness after total thyroidectomy for papillary thyroid cancer. Very low-dose controlled-release phentermine/topiramate was prescribed and intensive lifestyle modifications were encouraged. As a result, the patient effectively lost weight and reached a near-normal weight without adverse drug effects. This implies that even an off-label anti-obesity medication low dose may be better for some patients, and the most important factor in obesity treatment is patient-tailored treatment.

Dosimetric Characteristic of Digital CCD Video Camera for Radiation Therapy

  • Young Woo. Vahc;Kim, Tae Hong.;Won Kyun. Chung;Ohyun Kwon;Park, Kyung Ran.;Lee, Yong Ha.
    • 한국의학물리학회지:의학물리
    • /
    • 제11권2호
    • /
    • pp.147-155
    • /
    • 2000
  • Patient dose verification is one of the most important parts in quality assurance of the treatment delivery for radiation therapy. The dose distributions may be meaningfully improved by modulating two dimensional intensity profile of the individual high energy radiation beams In this study, a new method is presented for the pre-treatment dosimetric verification of these two dimensional distributions of beam intensity by means of a charge coupled device video camera-based fluoroscopic device (henceforth called as CCD-VCFD) as a radiation detecter with a custom-made software for dose calculation from fluorescence signals. This system of dosimeter (CCD-VCFD) could reproduce three dimensional (3D) relative dose distribution from the digitized fluoroscopic signals for small (1.0$\times$1.0 cm$^2$ square, ø 1.0 cm circular ) and large (30$\times$30cm$^2$) field sizes used in intensity modulated radiation therapy (IMRT). For the small beam sizes of photon and electron, the calculations are performed In absolute beam fluence profiles which are usually used for calculation of the patient dose distribution. The good linearity with respect to the absorbed dose, independence of dose rate, and three dimensional profiles of small beams using the CCD-VCFD were demonstrated by relative measurements in high energy Photon (15 MV) and electron (9 MeV) beams. These measurements of beam profiles with CCD-VCFD show good agreement with those with other dosimeters such as utramicro-cylindrical (UC) ionization chamber and radiographic film. The study of the radiation dosimetric technique using CCD-VCFD may provide a fast and accurate pre-treatment verification tool for the small beam used in stereotactic radiosurgery (SRS) and can be used for verification of dose distribution from dynamic multi-leaf collimation system (DMLC).

  • PDF

방사선 개인피폭선량계를 이용한 피폭선량 측정 및 유용성 평가 (Evaluation of Usability and Radiation Dose Measurement Using Personal Radiation Exposure Dosimeter)

  • 강인석;안성민
    • 한국콘텐츠학회논문지
    • /
    • 제14권11호
    • /
    • pp.864-870
    • /
    • 2014
  • 선량계 유용성을 평가하기 위한 방법으로 방사선관계종사자의 피폭선량을 측정하여 개인피폭관리를 위한 선량계 선택의 기초 자료를 제시하고자 하였다. 2012년 1년간 방사선사 30명을 대상으로 하였으며 개인피폭 누적선량을 측정하여 열형광선량계, 형광유리선량계, 광자극발광선량계의 성능을 조사하였다. 연구방법으로는 DAP와 ion-chamber를 이용하여 세종류 개인피폭선량계의 선량측정값을 비교 분석하였으며 의료기관별, 검사업무별, 분기별 방사선관계종사자의 피폭누적선량을 확인하였다. 결과적으로 직접 X선조사를 통한 개인피폭선량계의 선량값과 ion-chamber의 절대값에서 광자극발광선량계가 열형광선량계나 형광유리선량계에 비해 더 유사한 선량값을 나타내 측정 능력면에서 더 우수한 결과를 나타냈다. 또한 방사선발생구역에서 방사선관계종사자의 피폭선량이 광자극발광선량계에서 보다 높게 나타났다.