• Title/Summary/Keyword: indium-tin-oxide electrode

Search Result 229, Processing Time 0.031 seconds

Single Color Realization and Driving Method of Three-Electrode Type Reflective Display (3전극형 반사형 디스플레이의 단일컬러 구현 및 구동방법)

  • Lee, Sang-Il;Kim, Young-Cho
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.2
    • /
    • pp.109-114
    • /
    • 2015
  • We realize a color reflective display without any color filter and sub-pixelation concept, by which the full or single color realization is basically impossible. In this study, we use a 3-electrode on the lower substrate with indium tin oxide (ITO) glass. The width of a rib is $30{\mu}m$, a cell size is $150{\mu}m{\times}150{\mu}m$, and the space of lower electrodes is $10{\mu}m$. To get the single color, we drive this panel by a identical algorithm based on the movement of charged particle in color fluid within a cell with hermetic seal. According to the driving method, the lifetime of panel is different.

Photoelectrochemical Characteristics for Cathodic Electrodeposited Cu2O Film on Indium Tin Oxide (음극전착법을 이용한 Cu2O 막의 광전기 화학적 특성)

  • 이은호;정광덕;주오심;최승철
    • Journal of the Korean Ceramic Society
    • /
    • v.41 no.3
    • /
    • pp.183-189
    • /
    • 2004
  • Cuprous oxide (Cu$_2$O) thin films are cathodically deposited on Indium Tin Oxide (ITO) substrate. The as-deposited films were heat-treated at 30$0^{\circ}C$ to obtain Cu$_2$O. After the heat treatment, the film was changed from Cu metal into Cu$_2$O phase. The phase, morphology and photocurrent density of the films were dependent on the preparation conditions of deposition time, applied voltage, and the duration of heat treatment. The Cu$_2$O films were characterized by X-Ray Diffractometer (XRD) and Scanning Electron Microscope (SEM). The apparent grain size of the films formed by the normal method was larger than those grown by the pulse method. The CU$_2$O film what was deposited at -0.7 V for 300 sec and then, calcined at 30$0^{\circ}C$ for 1 h showed the predominant photocurrent density of 1048 $\mu$A/$\textrm{cm}^2$. And the stability of Cu$_2$O electrodes were improved with chemically deposited TiO$_2$ thin films on Cu$_2$O.

Formation of Copper Electroplated Electrode Patterning Using Screen Printing for Silicon Solar Cell Transparent Electrode (실리콘 태양전지 투명전극용 스크린 프린팅을 이용한 구리 도금 전극 패터닝 형성)

  • Kim, Gyeong Min;Cho, Young Joon;Chang, Hyo Sik
    • Korean Journal of Materials Research
    • /
    • v.29 no.4
    • /
    • pp.228-232
    • /
    • 2019
  • Copper electroplating and electrode patterning using a screen printer are applied instead of lithography for heterostructure with intrinsic thin layer(HIT) silicon solar cells. Samples are patterned on an indium tin oxide(ITO) layer using polymer resist printing. After polymer resist patterning, a Ni seed layer is deposited by sputtering. A Cu electrode is electroplated in a Cu bath consisting of $Cu_2SO_4$ and $H_2SO_4$ at a current density of $10mA/cm^2$. Copper electroplating electrodes using a screen printer are successfully implemented to a line width of about $80{\mu}m$. The contact resistance of the copper electrode is $0.89m{\Omega}{\cdot}cm^2$, measured using the transmission line method(TLM), and the sheet resistance of the copper electrode and ITO are $1{\Omega}/{\square}$ and $40{\Omega}/{\square}$, respectively. In this paper, a screen printer is used to form a solar cell electrode pattern, and a copper electrode is formed by electroplating instead of using a silver electrode to fabricate an efficient solar cell electrode at low cost.

Fabrication of a Transparent Electrode for a Flexible Organic Solar Cell in Atomic Layer Deposition (ALD 공정을 이용한 플렉시블 유기태양전지용 투명전극 형성)

  • Song, Gen-Soo;Kim, Hyoung-Tae;Yoo, Kyung-Hoon
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.121.2-121.2
    • /
    • 2011
  • Aluminum-doped Zinc Oxide (AZO) is considered as an excellent candidate to replace Indium Tin Oxide (ITO), which is widely used as transparent conductive oxide (TCO) for electronic devices such as liquid crystal displays (LCDs), organic light emitting diodes (OLEDs) and organic solar cells (OSCs). In the present study, AZO thin film was applied to the transparent electrode of a channel-shaped flexible organic solar cell using a low-temperature selective-area atomic layer deposition (ALD) process. AZO thin films were deposited on Poly-Ethylene-Naphthalate (PEN) substrates with Di-Ethyl-Zinc (DEZ) and Tri-Methyl-Aluminum (TMA) as precursors and $H_2O$ as an oxidant for the atomic layer deposition at the deposition temperature of $130^{\circ}C$. The pulse time of TMA, DEZ and $H_2O$, and purge time were 0.1 second and 20 second, respectively. The electrical and optical properties of the AZO films were characterized as a function of film thickness. The 300 nm-thick AZO film grown on a PEN substrate exhibited sheet resistance of $87{\Omega}$/square and optical transmittance of 84.3% at a wavelength between 400 and 800 nm.

  • PDF

A study on the enhancement of hole injection in OLED using NiO/AZO Anode (NiO/AZO anode를 적용한 OLED의 정공주입 향상에 관한 연구)

  • Jin, Eun-Mi;Song, Min-Jong;Kim, Jin-Sa;Park, Choon-Bae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.444-445
    • /
    • 2007
  • Aluminum-doped zinc oxide (AZO) films are attractive materials as transparent conductive electrode because they are inexpensive, nontoxic and abundant element compared with indium tin oxide (ITO). AZO films have been deposited on glass (coming 1737) substrates by RF magnetron sputtering system. An ultrathin layer of nickel oxide (NiO) was deposited on the AZO anode to enhance the hole injections in organic light-emitting diodes (OLED). The current density-voltage and luminescence-voltage properties of devices were studied and compared with ITO device.

  • PDF

Novel Enhanced Flexibility of ZnO Nanowires Based Nanogenerators Using Transparent Flexible Top Electrode

  • Gang, Mul-Gyeol;Ha, In-Ho;Kim, Seong-Hyeon;Jo, Jin-U;Ju, Byeong-Gwon;Lee, Cheol-Seung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.490.1-490.1
    • /
    • 2014
  • The ZnO nanowire (NW)-based nanogenerators (NGs) can have rectifying current and potential generated by the coupled piezoelectric and semiconducting properties of ZnO by variety of external stimulation such as pushing, bending and stretching. So, ZnO NGs needed to enhance durability for stable properties of NGs. The durability of the metal electrodes used in the typical ZnO nanogenerators(NGs) is unstable for both electrical and mechanical stability. Indium tin oxide (ITO) is used as transparent flexible electrode but because of high cost and limited supply of indium, the fragility and lack of flexibility of ITO layers, alternatives are being sought. It is expected that carbon nanotube and Ag nanowire conductive coatings could be a prospective replacement. In this work, we demonstrated transparent flexible ZnO NGs by using CNT/Ag nanowire hybrid electrode, in which electrical and mechanical stability of top electrode has been improved. We grew vertical type ZnO NW by hydrothermal method and ZnO NW was coated with hybrid silicone coating solution as capping layer to enhance adhesion and durability of ZNW. We coated the CNT/Ag nanowire hybrid electrode by using bar coating system on a capping layer. Power generation of the ZnO NG is measured by using a picoammeter, a oscilloscope and confirmed surface condition with FE-SEM. As a results, the NGs using the CNT/Ag NW hybrid electrode show 75% transparency at wavelength 550 nm and small change of the resistance of the electrode after bending test. It will be discussed the effect of the improved flexibility of top electrode on power generation enhancement of ZnO NGs.

  • PDF

Evaluations of Life Cycle Assessment on Indium-Tin-Oxide Electrochemical Recycling Process (디스플레이 투명전극용 인듐-주석-산화물의 전기화학적 재활용 공정에 관한 전과정 평가)

  • Kim, Raymund K.I.;Lee, Na-Ri;Lee, Soo-Sun;Lee, Young-Sang;Hong, Sung-Jei;Son, Young-Keun;Hong, Tae-Whan
    • Clean Technology
    • /
    • v.19 no.4
    • /
    • pp.388-392
    • /
    • 2013
  • Iindium-tin-oxide (ITO) material was had to use in display application as transparent electrode. However it would be problems comes up, the depletion of indium, tin and energy consumption of production process. Therefore recently trend was demanded alternative ITO material and recycling/reused ITO. In this conditions, the environmental impact have to express correct value about recycling/reused ITO process. The life cycle assessment was valuable method in this process. Thus first step was carried out separating in/out put (material) sources and then, exactive data base (DB) was applied. The result of environment impact was calculated by affect categories and recycling rate was set to 34% (This value was measured in previous project). The rate (g) of ITO material was calculated by chemical equivalent. In result, environmental impact were revealed acidification potential and abiotic depletion and if do not recycle/reuse ITO, $ 476 per 1 ton waste in land.

Dependance on Metal Electrode of Poly(3-hexylthiophene) EL Device (Poly(3-hexylthiophene) 발광소자의 금속전극 의존성)

  • 서부완;김주승;김형곤;이경섭;구할본
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.11a
    • /
    • pp.162-165
    • /
    • 2000
  • To investigate the effect of metal electrode in electroluminescent[EL] devices, we fabricated EL devices of ITO/P3HT/Al, ITO/P3HT/LiF/Al and ITO/P3HT/Mg:In structure. In current-voltage-light power characteristics, turn-on voltage of EL devices using LiF insulating layer and Mg:In(2.8V) metal electrode is lower than EL device using Al(4.2V). Besides the external quantum efficiency is improved also. The reason is related to carrier mobility and carrier injection, which would affect the hole-electron balance. In the device with Al electrode, holes injected from indium-tin-oxide[ITO] to poly(3-hexylthiophene)[P3HT] might reach the Al electrode without interacting with injected electrons, because the electron injection efficiency was very low for this electrode. Besides oxidation of the Al electrode is likely due to holes reaching the cathode without meeting injected electrons. Another possible reason for the higher EL efficiency may be the insulating layer playing the role of a tunneling barrier for holes to the Al electrode. In all EL devices, the orange-red light was clearly visible in a dark room. Maximum peak wavelength of EL spectrum emitted at 640nm in accordance with photon energy 1.9eV

  • PDF

Electrochemical Preparation of Indidum Sulfide Thin Film as a Buffer Layer of CIGS Solar Cell (CIGS 태양전지 버퍼층으로의 활용을 위한 인듐설파이드의 전기화학적 합성)

  • Kim, Hyeon-Jin;Kim, Kyu-Won
    • Journal of the Korean Electrochemical Society
    • /
    • v.14 no.4
    • /
    • pp.225-230
    • /
    • 2011
  • CIGS solar cells are kind of thin film solar cells, which are studied several years. CdS buffer layer that makes heterojunction between window layer and absorbing layer was one of issue in the CIGS solar cell study. New types of buffer layer consisted of indium sulfide are being studied these days owing to high price and environmental harmful of CdS. In this study, we demonstrated electrochemical synthesis of indium sulfide film as a buffer layer, which is cheaper and faster than other methods. A uniform indium sulfide film was obtained by applying two different alternating potentials. The band gap of the film was optimized by controlling temperature during the electrochemical synthesis. Using x-ray photoelectron spectroscopy and diffraction method we confirmed that ${\beta}$-indium sulfide was formed on ITO electrode surface.

Carbon Nanotube (CNT) based Transparent Conductive Films for Display Applications (탄소나노튜브 기반 투명전도성 필름 및 이의 응용)

  • Lee, Geon-Woong
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2007.06a
    • /
    • pp.77-77
    • /
    • 2007
  • The development of next generation displays such as flexible display is a major challenge. Most materials and processes in current flat panel display industry cannot be transferred to flexible substrates. Typically, indium tin oxide (ITO) thin films are brittle and need to be deposited at high temperature to achieve an optimal opto-electrical property, therefore ITO films cannot be used as a flexible electrode. Up to date, many alternative materials to ITO have been proposed such as conductive polymers, nanometals, solution deposited transparent conductive oxide(TCO) and carbon nanotubes(CNTs). CNT based transparent conductive films are fabricated on glass and polymer substrates. CNT thin films exhibit a sheet resistance ($R_s$) of nearby $10^3\;{\Omega}/sq$ with a transmittance of around 80% on the visible light range, which is attributed by excellent dispersion and interaction among CNTs, solvents and polymeric binders. This talk will present the current studies, opto-electrical properties, design criteria and its applications for CNT-based transparent conductive films.

  • PDF