• Title/Summary/Keyword: indium industry

Search Result 25, Processing Time 0.023 seconds

A Review on Cases of Indium-related Occupational Diseases and Korean Indium-related Industries and Processes (인듐 관련 직업병 사례 및 국내 사업장 현황)

  • Yi, Gwang Yong;Park, Doo Yong
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.23 no.3
    • /
    • pp.299-306
    • /
    • 2013
  • Objectives: The purpose of this study is to provide current the recent information on indium-related adverse health effects and the Korean indium-related industries. Methods: Peer review papers were searched in environmental, occupational and medical journals with the keyword of 'Indium' and 'ITO' and reviewed. To determine the indium related industries and indium consumption amounts, references and database were investigated and analyzed. In addition, field walk-through surveys and interviews were conducted in order to collect field data and to ascertain the field situation for the processes and industries. Results: A total of 10 cases of indium lung diseases have been reported in series since the first case reported in 2001. Seven cases were found in Japan, two cases in the United States, and one in China. No indium lung case has been reported yet in Korea, but it is believed that there are high potential risks among workers in indium-related industries. There are four categories in indiumrelated- industry; indium production and smelting, manufacturing of indium products such as ITO target, the production of thin films of flat panel display, and indium recovery industry. We found that all these types of industries are operating in Korea. Therefore, it is necessary for industrial hygienists to understand the processes and industries related to indium as well as the adverse health effects of indium. Conclusions: It was found that all four categories of indium-related industry from the indium production to recovery industry are active in Korea. However, the adverse health effects of indium are not well recognized. Therefore, it is believed that there is a high risks in indium-related industry, and it is necessary to make emergency interventions.

Recovery of Indium from Scrap

  • Han, Kenneth N.
    • Resources Recycling
    • /
    • v.10 no.5
    • /
    • pp.3-7
    • /
    • 2001
  • Indium frequently associated with the semiconductor industry is becoming an important metal element widely used in industry. In this paper, its properties especially in relation to its recovery from scrap are reviewed and discussed. Also presented in this paper is how best indium can be recovered by the hydrometallurgical means.

  • PDF

Workers' Exposure to Indium Compounds at the Electronics Industry in Republic of Korea

  • Yi, Gwangyong;Jeong, Jeeyeon;Bae, Yasung;Shin, Jungah;Ma, Hyelan;Lee, Naroo;Park, Seung-Hyun;Park, Dooyong
    • Safety and Health at Work
    • /
    • v.12 no.2
    • /
    • pp.238-243
    • /
    • 2021
  • Objectives: The aim of this study was to provide baseline data for the assessment of exposure to indium and to prevent adverse health effects among workers engaged in the electronics and related industries in Republic of Korea. Methods: Total (n = 369) and respirable (n = 384) indium concentrations were monitored using personal air sampling in workers at the following 19 workplaces: six sputtering target manufacturing companies, four manufacturing companies of panel displays, two companies engaged in cleaning of sputtering components, two companies dedicated to the cleaning of sputtering target, and five indium recycling companies. Results: The level of exposure to total indium ranged from 0.9 to 609.3 ㎍/m3 for the sputtering target companies; from 0.2 to 2,782.0 ㎍/m3 for the panel display companies and from 0.5 to 2,089.9 ㎍/m3 for the indium recycling companies. The level of exposure to respirable indium was in the range of 0.02 to 448.6 ㎍/m3 for the sputtering target companies; 0.01 to 419.5 ㎍/m3 for the panel display companies; and 0.5 to 436.3 ㎍/m3 for the indium recycling companies. The indium recycling companies had the most samples exceeding the exposure standard for indium, followed by sputtering target companies and panel display companies. Conclusions: The main finding from this exposure assessment is that many workers who handle indium compounds in the electronics industry are exposed to indium levels that exceed the exposure standards for indium. Hence, it is necessary to continuously monitor the indium exposure of this workforce and take measures to reduce its exposure levels.

Recovery of Indium for the Recycling of End-of-life Flat Panel Display Devices (폐 디스플레이 재활용을 위한 인듐 회수기술)

  • Uhm, Sunghyun;Cho, Sungsu;Lee, Sooyoung
    • Applied Chemistry for Engineering
    • /
    • v.26 no.4
    • /
    • pp.389-393
    • /
    • 2015
  • Recovery of indium from secondary sources have been attracting over years not only because of increasing demand together with development of flat panel display industry but also industrial criticality of indium. Applied technology to recover indium for recycling of end-of-life FPD devices can be broadly divided into three major steps, disassembly or dismantling, enrichment or upgrading, and refining or purification. In addition, advanced technology such as zone-refining can be employed for ultra-high purity products. In this mini-review, we present currently applied technologies for recovery of indium and the outlook for total recycling of FDP devices.

The change of Sn, In/Si(111) Surface structure and Investigation of desorption energy (Sn, In/Si(III)표면에서의 구조변화 및 이탈에너지에 대한 연구)

  • Kwak, Ho-Weon;Kwak, Ji-Hoon
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.5 no.3
    • /
    • pp.209-212
    • /
    • 2002
  • The change of surface structures for the deposition of Sn, In on clean Si(111) surface is investigated as a function of surface coverage by RHEED system. For tin submonolayer films $7{\times}7$, ${\sqrt{3}}{\times}{\sqrt{3}}$ structures are observed depending on the coverage and substrate temperature. For indium submonolayer films $7{\times}7$, ${\sqrt{3}}{\times}{\sqrt{3}}$, ${\sqrt{31}}{\times}{\sqrt{31}}$, $1{\times}1$ structures are observed. We find that at substrate temperature of $500^{\circ}C$, ${\sqrt{3}}{\times}{\sqrt{3}}$ structure is formed at tin coverages of 0.2~0.4 ML and at indium coverages of 0.1~0.3 ML, respectively. From the desorption process, the desorption energies of Sn, In in ${\sqrt{3}}{\times}{\sqrt{3}}$ structure is observed to he 3.25 eV, 2.66eV, respectively.

  • PDF

Effect of the oxygen flow ratio on the structural and electrical properties of indium zinc tin oxide (IZTO) films prepared by pulsed DC magnetron sputtering

  • Son, Dong-Jin;Nam, Eun-Kyoung;Jung, Dong-Geun;Ko, Yoon-Duk;Choi, Byung-Hyun;Kim, Young-Sung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.168-168
    • /
    • 2010
  • Transparent conduction oxides (TCOs) films is extensively reported for optoelectronic devices application such as touch panels, solar cells, liquid crystal displays (LCDs), and organic light emitting diodes(OLEDs). Among the many TCO film, indium tin oxide(ITO) is in great demand due to the growth of flat panel display industry. However, indium is not only high cost but also its deposits dwindling. Therefore, many studies are being done on the transparent conductive oxides(TCOs). We fabricated a target of IZTO(In2O3:ZnO:SnO2=70:15:15 wt.%) reduced indium. Then, IZTO thin films were deposited on glass substrates by pulsed DC magnetron sputtering with various oxygen flow ratio. The substrate temperature was fixed at the room temperature. We investigated the electrical, optical, structural properties of IZTO thin films. The electrical properties of IZTO thin films were dependent on the oxygen partial pressure. As a result, the most excellent properties of IZTO thin films were obtained at the 3% of oxygen flow rate with the low resistivity of $7.236{\times}10^{-4}{\Omega}cm$. And also the optical properties of IZTO thin films were shown the good transmittance over 80%. These IZTO thin films were used to fabricated organic light emitting diodes(OLEDs) as anode and the device performances studied. The OLED with an IZTO anode deposited at optimized deposition condition showed good brightness properties. Therefore, IZTO has utility value of TCO electrode although it reduced indium and we expect it is possible for the IZTO to apply to flexible display due to the low processing temperature.

  • PDF

Electrical and Optical Properties of IZO Films Deposited on Polynorbornene Substrate (Polynorbornene 기판 위에 증착된 IZO 필름의 전기 및 광학적 특성연구)

  • Park, Sung-Hwan;Ha, KiRyong
    • Applied Chemistry for Engineering
    • /
    • v.20 no.6
    • /
    • pp.612-616
    • /
    • 2009
  • Transparent conductive oxide (TCO) films have been widely used in the field of flat panel display industry. Transparent conductive indium zinc oxide (IZO) thin films with excellent chemical stability have attracted much attention as an alternative material for indium tin oxide (ITO) films. In this study, using a $In_2O_3$ and ZnO powder mixture with a ratio of 90 : 10wt% as a target, IZO films were prepared on polynorbornene (PNB) substrates by electron beam evaporation. The effect of substrate temperature and $O_2$ introduction flow rate were investigated in terms of electrical and optical properties of deposited IZO films. The best electrical and optical properties we obtained from this study were sheet resistance value of $5.446{\times}10^2{\Omega}/{\boxempty}$ and optical transmittance of 87.4% at 550 nm at $O_2$ introduction flow rate of 4 sccm, deposition rate of $2{\AA}$/sec, thickness of 1000 $\AA$ and substrate temperature of $150^{\circ}C$.

Materials and Characteristics of Emerging Transparent Electrodes (차세대 투명전극 소재의 종류와 특성)

  • Chung, Moon Hyun;Kim, Seyul;Yoo, Dohyuk;Kim, Jung Hyun
    • Applied Chemistry for Engineering
    • /
    • v.25 no.3
    • /
    • pp.242-248
    • /
    • 2014
  • Flexibility of a transparent device has been required in accordance with miniaturization and mobilization needs in recent industry. The most representative material used as a transparent electrode is indium tin oxide (ITO). However, a couple of disadvantages of ITO are the exhaustion of natural resource of indium and its inflexibility due to inorganic substance. To overcome the limit of ITO, a variety of alternative materials have been researched on development of transparent electrodes and its properties through composite materials. In this review, we classify some of emerged materials with their general studies.