Browse > Article
http://dx.doi.org/10.14478/ace.2014.1013

Materials and Characteristics of Emerging Transparent Electrodes  

Chung, Moon Hyun (Department of Chemical & Biomolecular Engineering, Yonsei University)
Kim, Seyul (Department of Chemical & Biomolecular Engineering, Yonsei University)
Yoo, Dohyuk (Department of Chemical & Biomolecular Engineering, Yonsei University)
Kim, Jung Hyun (Department of Chemical & Biomolecular Engineering, Yonsei University)
Publication Information
Applied Chemistry for Engineering / v.25, no.3, 2014 , pp. 242-248 More about this Journal
Abstract
Flexibility of a transparent device has been required in accordance with miniaturization and mobilization needs in recent industry. The most representative material used as a transparent electrode is indium tin oxide (ITO). However, a couple of disadvantages of ITO are the exhaustion of natural resource of indium and its inflexibility due to inorganic substance. To overcome the limit of ITO, a variety of alternative materials have been researched on development of transparent electrodes and its properties through composite materials. In this review, we classify some of emerged materials with their general studies.
Keywords
Transparent electrode; Transparent conducting oxide; Carbon materials; Conducting polymer; Metal nanowire;
Citations & Related Records
연도 인용수 순위
  • Reference
1 A. M. Nardes, M. Kemerink, M. M. de Kok, E. Vinken, K. Maturova, and R. A. J. Janssen, Conductivity, work function, and environmental stability of PEDOT:PSS thin films treated with sorbitol, Organic electronics, 9, 727-734 (2008).   DOI   ScienceOn
2 N. Kim, S. Kee, S. H. Lee, B. H. Lee, Y. H. Kahng, Y.-R. Jo, B.-J. Kim, and K. Lee, Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization, Adv. Mater., 26, 2268-2272 (2014).   DOI
3 Q. Pei, G. Zuccarello, M. Ahlskog, and O. Inganas, Electrochromic and highly stable poly(3,4-ethylenedioxythiophene) switches between opaque blue-black and transparent sky blue, Polymer, 35, 1347-1351 (1994).   DOI   ScienceOn
4 J.-H. Yun and J. Kim, Double transparent conducting oxide films for photoelectric devices, Materials Letters, 70, 4-6 (2012).   DOI
5 H.-W. Wu and C.-H. Chu, Structural and optoelectronic properties of AZO/Mo/AZO thin films prepared by rf magnetron sputtering, Materials Letters, 105, 65-67 (2013).   DOI
6 F. Li, Y. Zhang, C. Wu, Z. Lin, B. Zhang, and T. Guo, Improving efficiency of organic light-emitting diodes fabricated utilizing AZO/Ag/AZO multilayer electrode Vacuum, 86, 1895-1897 (2012).   DOI
7 M.-S. Lee, K. Lee, S.-Y. Kim, H. Lee, J. Park, K.-H. Choi, H.-K. Kim, D.-G. Kim, D.-Y. Lee, S. W. Nam, and J.-U. Park, High-performance, transparent, and stretchable electrodes using graphene-metal nanowire hybrid structures, Nano Lett., 13, 2814-2821 (2013).   DOI
8 J. Li, L. Hu, L. Wang, Y. Zhou, G. Gruner, and T. J. Marks, Organic light-emitting diodes having carbon nanotube anodes, Nano Lett., 6, 2472-2477 (2006).   DOI   ScienceOn
9 S. Bae, H. Kim, Y. Lee, X. Xu, J.-S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H. R. Kim, Y. I. Song, Y.-J. Kim, K. S. Kim, B. O. zyilmaz, J.-H. Ahn, B. H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes, Nature nanotechnology, 5, 574-578 (2010).   DOI
10 S. Pang, Y. Hernandez, X. Feng, and K. Mullen, Graphene as transparent electrode material for organic electronics, Adv. Mater., 23, 2779-2795 (2011).   DOI   ScienceOn
11 D. S. Hecht, A. M. Heintz, R. S. Lee, L. Hu, B. Moore, C. Cucksey, and S. Risser, High conductivity transparent carbon nanotube films deposited from superacid, Nanotechnology, 22, 075201 (2011).   DOI
12 L. Groenendaal, F. Jonas, D. Freitag, H. Pielartzik, J. R. Reynolds, Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future, Adv. Mater., 12, 481-494 (2000).   DOI
13 J. Ouyang, "Secondary doping" methods to significantly enhance the conductivity of PEDOT : PSS for its application as transparent electrode of optoelectronic devices, Displays, 34, 423-436 (2013).   DOI
14 D. Alemu, H.-Y. Wei, K.-C. Ho, and C.-W. Chu, Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells, Energy Environ. Sci., 5, 9662-9671 (2012).   DOI   ScienceOn
15 C. Badre, L. Marquant, A. M. Alsayed, and L. A. Hough, Highly conductive Poly(3,4-ethylenedioxythiophene):Poly(styrenesulfonate) films using 1-Ethyl-3-methylimidazolium tetracyanoborate ionic liquid, Adv. Funct. Mater., 22, 2723-2727 (2012).   DOI   ScienceOn
16 K. I. Bolotin, K. J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, and H. L. Stormer, Ultrahigh electron mobility in suspended graphene, Solid State Communications, 146, 351-355 (2008).   DOI   ScienceOn
17 A. B. V. K. Kumar, C. W. Bae, L. Piao, and S.-H. Kim, Silver nanowire based flexible electrodes with improved properties: high conductivity, transparency, adhesion and low haze, Materials Research Bulletin, 48, 2944-2949 (2013).   DOI
18 D. Y. Choi, H. W. Kang, H. J. Sung, and S. S. Kim, Annealing-free, flexible silver nanowire-polymer composite electrodes via a continuous two-step spray-coating method, Nanoscale, 5, 977-983 (2013).   DOI   ScienceOn
19 R. Zhu, C.-H. Chung, K. C. Cha, W. Yang, Y. B. Zheng, H. Zhou, T.-B. Song, C.-C Chen, P. S. Weiss, G. Li, and Y. Yang, Fused silver nanowires with metal oxide nanoparticles and organic polymers for highly transparent conductors, ACS Nano, 5, 9877-9882 (2011).   DOI
20 K. S. Kim, Y. Zhao, H. Jang, S. Y. Lee, J. M. Kim, K. S. Kim, J.-H. Ahn, P. Kim, J.-Y. Choi, and B. H. Hong, Large-scale pattern growth of graphene films for stretchable transparent electrodes, Nature, 457, 706-710 (2009).   DOI   ScienceOn
21 N. Manavizadeh, F. A. Boroumand, E. A. Soleimani, F. Raissi, S. Bagherzadeh, A. Khodayari, and M. A. Rasouil, Influence of substrates on the structural and morphological properties of RF sputtered ITO thin films for photovoltaic application, Thin Solid Films, 517, 2324-2327 (2009).   DOI
22 J. K. Wassei and R. B. Kaner, Graphene a promising transparent conductor, Materialstoday, 13, 52-59 (2010).
23 K. A. Sierros, N. J. Morris, K. Ramji, and D. R. Cairns, Stress-corrosion cracking of indium tin oxide coated polyethylene terephthalate for flexible optoelectronic devices, Thin Solid Films, 517, 2590-2595 (2009).   DOI   ScienceOn
24 K.-H. Lee, S.-M. Kim, J. Jeong, Y. Pak, H. Song, J. Park, K.-H. Lim, J.-H. Kim, Y. S. Kim, H. C. Ko, I. K. Kwon, and G.-Y. Jung, All-solution-processed transparent thin film transistor and its application to liquid crystals driving, Adv. Mater., 25, 3209-3214 (2013).   DOI
25 K. Nakashima and Y. Kumahara, Effect of tin oxide dispersion on nodule formation in ITO Sputtering, Vacuum, 66, 221-226 (2002).   DOI   ScienceOn
26 D. S. Hecht, L. Hu, and G. Irvin, Emerging transparent electrodes based on thin films of carbon nanotubes, graphene, and metallic nanostructures, Adv. Mater., 23, 1482-1513 (2011).   DOI   ScienceOn
27 G. A. Potoczny, T. S. Bejitual, J. S. Abell, K. A. Sierros, D. R. Cairns, and S. N. Kukureka, Flexibility and electrical stability of polyester- based device electrodes under monotonic and cyclic buckling conditions, Thin Solid Films, 528, 205-212 (2013).   DOI
28 L. Hu, H. S. Kim, J. Y. Lee, P. Peumans, and Y. Cui, Scalable coating and properties of transparent, flexible, silver nanowire electrodes, ACS Nano, 4, 2955-2963 (2010).   DOI   ScienceOn
29 J. Lee, P. Lee, H. B. Lee, S. Hong, I. Lee, J. Yeo, S. S. Lee, T.-S. Kim, D. Lee, and S. H. Ko, Room-temperature nanosoldering of a very long metal nanowire network by conducting-polymer-sssisted joining for a flexible touch-panel application, Adv. Funct. Mater., 23, 4171-4176 (2013).   DOI   ScienceOn
30 D. Yoo, J. Kim, and J. H. Kim, Direct synthesis of highly conductive PEDOT:PSS/graphene composites and their applications in energy harvesting systems, Nano Res., DOI: 10.1007/s12274-014-0433-z.   DOI   ScienceOn
31 Y.-K. Kim and D.-H. Min, Durable large-area thin films of graphene/carbon nanotube double layers as a transparent electrode, Langmuir, 25, 11302-11306 (2009).   DOI   ScienceOn
32 X. Ho, H. Lu, W. Liu, J. N. Tey, C. K. Cheng, E. Kok, and J. Wei, Electrical and optical properties of hybrid transparent electrodes that use metal grids and graphene films, J. Mater. Res., 28, 620-626 (2013).   DOI
33 K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva, and A. A. Firsov, Electric field effect in atomically thin carbon films, Science, 306, 666-669 (2004).   DOI   ScienceOn
34 Y. Xia, K. Sun, and J. Ouyang, Solution-processed metallic conducting polymer films as transparent electrode of optoelectronic devices, Adv. Mater., 24, 2436-2440 (2012).   DOI   ScienceOn
35 S. De, P. E. Lyons, S. Sorel, E. M. Doherty, P. J. King, W. J. Blau, P. N. Nirmalraj, J. J. Boland, V. Scardaci, J. Joimel, and J. N. Coleman, Transparent, flexible, and highly conductive thin films based on polymer-nanotube composites, ACS Nano, 3, 714-720 (2009).   DOI   ScienceOn
36 M. K. Song, D. S. You, K. Lim, S. Park, S. Jung, C. S. Kim, D.-H. Kim, D.-G. Kim, J.-K. Kim, J. Park, Y.-C. Kang, J. Heo, S.-H. Jin, J. H. Park, and J.-W. Kang, Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes, Adv. Funct. Mater., 23, 4177-4184 (2013).   DOI