• 제목/요약/키워드: indirect adaptive control

검색결과 115건 처리시간 0.032초

자율분산 신경회로망을 이용한 간접 적응제어 (Indirect Adaptive Control Based on Self-Organized Distributed Network(SODN))

  • 최종수;김형석;김성중;권오신
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1182-1185
    • /
    • 1996
  • The objective of this paper is to control a nonlinear dynamical systems based on Self-Organized Distributed Networks (SODN). The learning with the SODN is fast and precise. Such properties are caused from the local learning mechanism Each local network learns only data in a subregion. Methods for indirect adaptive control of nonlinear systems using the SODN is presented. Through extensive simulation, the SODN is shown to be effective for adaptive control of nonlinear dynamic systems.

  • PDF

GA 학습 방법 기반 동적 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어 (Indirect adaptive control of nonlinear systems using Genetic Algorithm based Dynamic neural network)

  • 조현섭;오명관
    • 한국산학기술학회:학술대회논문집
    • /
    • 한국산학기술학회 2007년도 추계학술발표논문집
    • /
    • pp.81-84
    • /
    • 2007
  • In this thesis, we have designed the indirect adaptive controller using Dynamic Neural Units(DNU) for unknown nonlinear systems. Proposed indirect adaptive controller using Dynamic Neural Unit based upon the topology of a reverberating circuit in a neuronal pool of the central nervous system. In this thesis, we present a genetic DNU-control scheme for unknown nonlinear systems. Our method is different from those using supervised learning algorithms, such as the backpropagation (BP) algorithm, that needs training information in each step. The contributions of this thesis are the new approach to constructing neural network architecture and its training.

  • PDF

On-Line Parameter Estimation Scheme for Uncertain Takagi-Sugeno Fuzzy Models

  • Cho, Young-Wan;Park, Chang-Woo
    • International Journal of Control, Automation, and Systems
    • /
    • 제2권1호
    • /
    • pp.68-75
    • /
    • 2004
  • In this paper, an estimator with an appropriate adaptive law for updating parameters is designed and analyzed based on the Lyapunov theory. The adaptive law is designed so that the estimation model follows the parameterized plant model. Using the proposed estimator, the parameters of the T-S fuzzy model can be estimated by observing the behavior of the system and it can be a basis for indirect adaptive fuzzy control.

Indirect Decentralized Repetitive Control for the Multiple Dynamic Subsystems

  • Lee, Soo-Cheol
    • 대한산업공학회지
    • /
    • 제23권1호
    • /
    • pp.1-22
    • /
    • 1997
  • Learning control refers to controllers that learn to improve their performance at executing a given task, based on experience performing this specific task. In a previous work, the authors presented a theory of indirect decentralized learning control based on use of indirect adaptive control concepts employing simultaneous identification and control. This paper extends these results to apply to the indirect repetitive control problem in which a periodic (i.e., repetitive) command is given to a control system. Decentralized indirect repetitive control algorithms are presented that have guaranteed convergence to zero tracking error under very general conditions. The original motivation of the repetitive control and learning control fields was learning in robots doing repetitive tasks such as on an assembly line. This paper starts with decentralized discrete time systems, and progresses to the robot application, modeling the robot as a time varying linear system in the neighborhood of the desired trajectory. Decentralized repetitive control is natural for this application because the feedback control for link rotations is normally implemented in a decentralized manner, treating each link as if it is independent of the other links.

  • PDF

An Indirect Decoupled Adaptive Fuzzy Sliding-Mode Control through width adaptation

  • Kim, Dowoo;Yang, Haiwon;Han, Hongsuck
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 2002년도 ICCAS
    • /
    • pp.62.4-62
    • /
    • 2002
  • $\textbullet$ Contents 1. Introduction $\textbullet$ Contents 2. System Description $\textbullet$ Contents 3. Decoupled Sliding Mde Control $\textbullet$ Contents 4. Decoupled Adaptive Fuzzy Sliding Mode Control through width adaptation $\textbullet$ Contents 5. Simulation Result $\textbullet$ Contents 6. Conclusion

  • PDF

시변 지연시간을 가지는 미지의 시스템에 대한 간접 극배치 적응 PID 제어기 (Indirect Adaptive Pole Assignment PID Controllers for Unknown Systems with time varying delay)

  • 남현도;안동준
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1988년도 전기.전자공학 학술대회 논문집
    • /
    • pp.913-916
    • /
    • 1988
  • Indirect adaptive pole assignment PID controllers for unknown systems with time varying delay, is proposed. Unknown system parameters are estimated by recursive least square method, and time varying delay is estimated using indirect predictors. Since the order of parameter vectors didn't increase, the computational burden is not largely increased in spite of using indirect adaptive control method with time varying delay estimation. Computer simulation is performed to illustrate the efficiency of the proposed method.

  • PDF

확장 칼만 필터 학습 방법 기반 웨이블릿 신경 회로망을 이용한 비선형 시스템의 간접 적응 제어 (Indirect Adaptive Control of Nonlinear Systems Using a EKF Learning Algorithm Based Wavelet Neural Network)

  • 김경주;최윤호;박진배
    • 한국지능시스템학회논문지
    • /
    • 제15권6호
    • /
    • pp.720-729
    • /
    • 2005
  • 본 논문에서는 미지의 비선형 시스템을 제어하기 위해 웨이블릿 신경 회로망을 이용한 간접 적응 제어기를 설계한다. 제안 된 간접 적응 제어기는 웨이블릿 신경 회로망을 이용한 동정 모델과 제어기로 구성된다. 여기서 동정 모델과 제어기에 사용되는 웨이블릿 신경 회로망은 시간과 주파수에 대한 정보를 동시에 포함하는 웨이블릿의 특성을 가지고 있기 때문에 다층구조 신경회로망과 방사 기저 함수 신경회로망에 보다 더 빠른 수렴특성을 보인다. 웨이블릿 신경 회로망의 학습방법은 경사 하강법, 유전알고리듬, DNA 기법등 여러 가지가 있으나, 본 논문에서는 확장 칼만 필터를 기반으로 한 학습 방법을 제안한다. 확장 칼만 필터 학습 방법은 계산이 복잡하기는 하지만 학습되어 갱신되는 파라미터의 이전 데이터 정보를 이용하는 특성 때문에 매우 빠른 수렴 특성을 보인다. 본 논문에서는 Buffing 시스템과 1축 머니퓰레이터에 대한 컴퓨터 모치실험을 통해 제안한 확장 칼만 필터 학습 방법을 이용한 간접 적응 제어기가 일반적인 경사 하강법을 이용한 경우보다 우수함을 보인다.

Hopfield 신경망의 파라미터 추정을 이용한 간접 적응 가변구조제어 (Indirect Adaptive Sliding Mode Control Using Parameter Estimation of Hopfield Network)

  • 함재훈;박태건;이기상
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 B
    • /
    • pp.1037-1041
    • /
    • 1996
  • Input-output linearization technique in nonlinear control does not guarantee the robustness in the presence of parameter uncertainty or unmodeled dynamics, etc. However, it has been used as an important preliminary step in achieving additional control objectives, for instance, robustness to parameter uncertainty and disturbance attenuation. An indirect adaptive control scheme based on input-output linearization is proposed in this paper. The scheme consists of a Hopfield network for process parameter identification and an adaptive sliding mode controller based on input-output linearization, which steers the system response into a desired configuration. A numerical example is presented for the trajectory tracking of uncertain nonlinear dynamic systems with slowly time-varying parameters.

  • PDF

퍼지규칙에 의한 직/간접 혼합 신경망 적응제어시스템의 설계 (Design of Combined Direct/Indirect Adaptive Neural Control System using Fuzzy Rule)

  • 장순용;최재석;이순영
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.724-727
    • /
    • 1999
  • In this paper, the direct and indirect neural adaptive controller are combined based on the Lyapunov synthesis approach. The proposed adaptive controller is constructed from RBF neural network and a set of fuzzy IF-THEN rules. And the weighting parameters are adjusted on-line according to some adaptation law for the purpose of controlling the plant to track a given trajectory. In this scheme, fuzzy IF-THEN rules are used to decide the combined weighting factor. It is shown that all the signals in the closed-loop system are uniformly bounded under mild assumptions. The effectiveness of the proposed control scheme is demonstrated through the control of one-link rigid robotics manipulator.

  • PDF

Indirect Adaptive Fuzzy Sliding Mode Control for Nonaffine Nonlinear Systems

  • Seo, Sam-Jun
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • 제5권2호
    • /
    • pp.145-150
    • /
    • 2005
  • We proposed the indirect adaptive fuzzy model based sliding mode controller to control nonaffine nonlinear systems. Takagi-Sugano fuzzy system is used to represent the nonaffine nonlinear system and then inverted to design the controller at each sampling time. Also sliding mode component is employed to eliminate the effects of disturbances, while a fuzzy model component equipped with an adaptation mechanism reduces modeling uncertainties by approximating model uncertainties. The proposed controller and adaptive laws guarantee that the closed-loop system is stable in the sense of Lyapunov and the output tracks a desired trajectory asymptotically.