• Title/Summary/Keyword: independent control

Search Result 3,031, Processing Time 0.031 seconds

Active RC Bandpass Filter with the Independent Tuning and Bandwidth Controls (중심주파수와 대역폭의 제어가 독립적인 능동여파기)

  • 김수중;정신일
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.12 no.6
    • /
    • pp.9-13
    • /
    • 1975
  • Employing indefinite admittance matrix analysis method, a novel synthesis procedure of general active-RC filters using 2 operational amplifiers has been shown in this paper. With this procedure, a stable active-RC bandpass filter hart been designed, which provides for independent adjustment of the uning and band-width control. The predicted and actual performance is in good agreement.

  • PDF

Construction of T-S Fuzzy Model for Nonlinear Systems (비선형 시스템에 대한 T-S 퍼지 모델 구성)

  • 정은태;권성하;이갑래
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.11
    • /
    • pp.941-947
    • /
    • 2002
  • Two methods of constructing T-S fuzzy model which is equivalent to a given nonlinear system are presented. The first method is to obtain an equivalent T-S fuzzy model by using the sum of linearly independent scalar functions with constant real matrix coefficients. The sum of products of linearly independent scalar functions is used in the second method. The former method is to formulate the procedures of T-S fuzzy modeling dealt in many examples of previous publications; the latter is a new method. By comparing the number of linearly independent functions used in the two methods, we can easily find out which method makes fewer rules than the other. The nonlinear dynamics of an inverted Pendulum on a cart is used as an equivalent T-5 fuzzy modeling example.

Hardware configuration of High-Density HVPS and High Speed independent Control method Using FPGA for Phased Array Transmitters (위상 배열 고출력증폭기용 고밀도 고전압 전원공급기 하드웨어 구성 및 FPGA를 이용한 고속 독립 제어방식)

  • Kang, Chun-Ho;Lee, Sung-Wook;Lee, Hong-Hak;Lee, Chang-Hoon;Byun, Gi-Sig
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.11
    • /
    • pp.2758-2764
    • /
    • 2015
  • In the field of electronic warfare applications, high voltage power supply(HVPS) for high power phased array transmitters must necessarily have an independent operating characteristics for driving mini TWTs. TWT independent operational characteristics, in order to run without interrupting the electronic warfare mission by maintaining the partial transmission function even when one of the TWT has occurred a failure, is known to be very important. In this paper, we describe the research on high-speed independent control system using a high-density HVPS, including FE modulators, hardware configuration and the FPGA in order to independently operate mini TWTs. Also, we have simulated some possible faults in phased array transmitters, and presents the test results to control a faulted TWT independently.

Integrated Guidance and Control Design for the Near Space Interceptor

  • WANG, Fei;LIU, Gang;LIANG, Xiao-Geng
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.16 no.2
    • /
    • pp.278-294
    • /
    • 2015
  • Considering the guidance and control problem of the near space interceptor (NSI) during the terminal course, this paper proposes a three-channel independent integrated guidance and control (IGC) scheme based on the backstepping sliding mode and finite time disturbance observer (FTDO). Initially, the three-channel independent IGC model is constructed based on the interceptor-target relative motion and nonlinear dynamic model of the interceptor, in which the channel coupling term and external disturbance are regarded as the total disturbances of the corresponding channel. Then, the FTDO is introduced to estimate the target acceleration and control system loop disturbances, and the feed-forward compensation term based on the estimated values is employed to effectively remove the effect of disturbances in finite time. Subsequently, the IGC algorithm based on the backstepping sliding mode is also given to obtain the virtual control moment. Furthermore, a robust least-squares weighted control allocation (RLSWCA) algorithm is employed to distribute the previous virtual control moment among the corresponding aerodynamic fins and reaction jets, which also takes into account the uncertainty in the control effectiveness matrix. Finally, simulation results show that the proposed IGC method can obtain the small miss distance and smooth interceptor trajectories.

A Study on the Alternative ARL Using Generalized Geometric Distribution (일반화 기하분포를 이용한 ARL의 수정에 관한 연구)

  • 문명상
    • Journal of Korean Society for Quality Management
    • /
    • v.27 no.4
    • /
    • pp.143-152
    • /
    • 1999
  • In Shewhart control chart, the average run length(ARL) is calculated using the mean of a conventional geometric distribution(CGD) assuming a sequence of identical and independent Bernoulli trials. In this, the success probability of CGB is the probability that any point exceeds the control limits. When the process is in-control state, there is no problem in the above assumption since the probability that any point exceeds the control limits does not change if the in-control state continues. However, if the out-of-control state begins and continues during the process, the probability of exceeding the control limits may take two forms. First, once the out-of-control state begins with exceeding probability p, it continues with the same exceeding probability p. Second, after the out-of-control state begins, the exceeding probabilities may very according to some pattern. In the first case, ARL is the mean of CGD with success probability p as usual. But in the second case, the assumption of a sequence of identical and independent Bernoulli trials is invalid and we can not use the mean of CGD as ARL. This paper concentrate on that point. By adopting one generalized binomial distribution(GBD) model that allows correlated Bernoulli trials, generalized geometric distribution(GGD) is defined and its mean is derived to find an alternative ARL when the process is in out-of-control state and the exceeding probabilities take the second form mentioned in the above. Small-scale simulation is performed to show how an alternative ARL works.

  • PDF

Human Postural Response to Linear Perturbation (선형외란에 대응하는 인체의 자세응답 해석)

  • Kim, Se-Young;Park, Su-Kyung
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Human postural responses appeared to have stereotyped modality, such as ankle mode, knee mode and hip mode in response to various perturbations. We examined whether human postural control gain of full-state feedback could be decoupled along with the eigenvector. To verify the model, postural responses subjected to fast backward perturbation were used. Upright posture was modeled as 3-segment inverted pendulum incorporated with feedback control, and joint torques were calculated using inverse dynamics. Postural modalities such as ankle, knee and hip mode were obtained from eigenvectors of biomechanical model. As oppose to the full-state feedback control, independent eigenvector control assumes that modal control input is determined by the linear combination of corresponding modality. We used optimization method to obtain and compare the feedback gains for both independent eigenvector control and full-state feedback control. As a result, we found that simulation result of eigenvector feedback was not competitive in comparison with that of full-state feedback control. This implies that the CNS would make use of full-state body information to generate compensative joint torques.

Joint disturbance torque analysis for independent joint controlled robots and its application in optimal path placement (독립관절제어 로봇의 관절외란해석과 최적경로위치 문제의 해법)

  • Choi, Myung-Hwan
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.4 no.3
    • /
    • pp.342-348
    • /
    • 1998
  • A majority of industrial robots are controlled by a simple joint servo control of joint actuators. In this type of control, the performance of control is greatly influenced by the joint interaction torques including Coriolis and centrifugal forces, which act as disturbance torques to the control system. As the speed of the robot increases, the effect of this disturbance torque increases, and hence makes the high speed - high precision control more difficult to achieve. In this paper, the joint disturbance torque of robots is analyzed. The joint disturbance torque is defined using the coefficients of dynamic equation of motion, and for the case of a 2 DOF planar robot, the conditions for the minimum and maximum joint disturbance torques are identified, and the effect of link parameters and joint variables on the joint disturbance torque are examined. Then, a solution to the optimal path placement problem is propose that minimizes the joint disturbance torque during a straight line motion. The proposed method is illustrated using computer simulation. The proposed solution method can be applied to a class of robots that are controlled by independent joint servo control, which includes the vast majority of industrial robots.

  • PDF

Validation of Efficiency Analysis for Independent Multi-Phase BLDC Motor Using Hysteresis PWM Current Control Method (Hysteresis PWM 전류 제어 기법을 사용한 독립 다상 BLDC 전동기의 효율 해석 유효성 검증)

  • Lee, Junewon;Kong, Yeongkyung;Park, Sunjung;Choi, Hoyong;Hong, Sungyoung
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.17 no.5
    • /
    • pp.604-610
    • /
    • 2014
  • In this paper, the analysis and the experiment of independent multi-phase BLDC motor are performed. The back-emf, iron loss analysis are performed by the finite element method and compared with experimental results. The independent multi-phase BLDC motor is manufactured and to measure the efficiency of the motor, evaluation system is also manufactured including the load generator. By comparing the analytic and the experimental results, the effectiveness of the analysis model is verified when calculating the efficiency of the motor.

Intelligent Control Design of Mobile robot Using Neural-Fuzzy Control Method (뉴럴-퍼지 제어기법에 의한 이동로봇의 지능제어기 설계)

  • 한성현
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.11 no.4
    • /
    • pp.62-67
    • /
    • 2002
  • This paper presents a new approach to the design of cruise control system of a mobile robot with two drive wheel. The proposed control scheme uses a Gaussian function as a unit function in the fuzzy-neural network and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized loaming architecture. It is Proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is shown by performing the computer simulation for trajectory tucking of the speed and azimuth of a mobile robot driven by two independent wheels.

Radial Force Control of a Novel Hybrid Pole BLSRM

  • Wang, Hui-Jun;Lee, Dong-Hee;Ahn, Jin-Woo
    • Journal of Power Electronics
    • /
    • v.9 no.6
    • /
    • pp.845-853
    • /
    • 2009
  • This paper presents a novel hybrid pole BLSRM (Bearingless Switched Reluctance Motor) and its radial force control scheme. The proposed hybrid pole BLSRM has separated radial force poles and rotating torque poles. According to the FEM analysis, the proposed BLSRM has an excellent linear characteristic of radial force and controllability that is independent from the torque current. The radial force can be produced by the radial force winding which is wound at the separated radial force poles. The rotating torque is produced by the excitation current of the torque windings which are wound at the torque pole. The proposed radial force control scheme is independent of the phase torque winding current. A simple PID controller and look-up table are used to maintain a constant rotor air-gap. The proposed BLSRM and its radial force control scheme are verified by FEM analysis and experimental tests.