• 제목/요약/키워드: incremental deformation

검색결과 160건 처리시간 0.022초

점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향 (An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process)

  • 윤석준;양동열
    • 소성∙가공
    • /
    • 제13권2호
    • /
    • pp.122-128
    • /
    • 2004
  • In order to make a doubly-curved sheet metal effectively, a sheet metal forming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation in thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the direction of one principal radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principal radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It mainly affects the generation of curvature in its own direction with the forming depth and the thickness of the material.

점진적 롤 성형 공정에서 공정 변수가 박판 금속의 곡률 생성에 미치는 영향 (An Effect of Process Parameters on the Generation of Sheet Metal Curvatures in the Incremental Roll Forming Process)

  • 윤석준;양동열
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2003년도 제4회 박판성형 심포지엄
    • /
    • pp.53-57
    • /
    • 2003
  • In order to make a doubly curved sheet metal effectively, a sheet metal farming process has been developed by adopting the flexibility of the incremental forming process and the principle of bending deformation which causes slight deformation to thickness. The developed process is an unconstrained forming process with no holder. For this study, the experimental equipment is set up with the roll set which consists of two pairs of support rolls and one center roll. In the experiments using aluminum sheets, it is found that the curvature of the formed sheet metal is determined by controlling the distance between supporting rolls in pairs and the forming depth of the center roll and it also depends on the thickness of the sheet metal. In order to check the effect of process parameters on the generation of sheet metal curvatures in this process, the orthogonal array is adopted. From the experimental results, among the process parameters, the distance between supporting rolls in pairs along the same direction of one principle radius of curvature as well as the forming depth and the thickness of the material is shown to influence the generation of curvature in the same direction significantly. That is, the other distance between supporting rolls in pairs which are not located in the same direction of one principle radius of curvature, does not have an significant effect on the generation of the curvature in that direction. It just affects the generation of curvature in its own direction mainly with the forming depth and the thickness of the material.

  • PDF

유체포화 다공매체의 단계적 굴착해석을 위한 유한요소해석방법 (Finite Element Analysis for Incremental Excavation in Fluid-Saturated Porous Media)

  • 구정회;홍순조;김문겸;황학주
    • 대한토목학회논문집
    • /
    • 제13권5호
    • /
    • pp.109-122
    • /
    • 1993
  • 유체포화 다공매체에서의 단계적 굴착시 형상변화로 인한 구조거동을 시간종속적 배수이론으로 예측하기 위한 유한요소해석방법을 제시하였다 시간종속적 배수거동을 고려한 유한요소방정식을 유도하기 위하여 Biot의 방정식을 사용하였다. 이론해가 존재하는 재하 하중에 의한 시간종속적 배수거동 문제의 해석과 완전배수거동시 1단계 굴착과 다단계 굴착시의 변형이 동일한가를 확인하므로써 유도된 방법의 타당성을 검증하였다. 1차원 및 2치원 문제에 대하여 시간종속적 배수모형과 완전배수모형에 의한 결과를 비교하여 그 차이를 예시하였다. 또한 단계적 굴착시 굴착속도 및 투수계수의 변화에 따른 영향도 분석하였다. 수치해석 시뮬레이션을 통해, 다공매체지반의 굴착해석시에는 시간종속적 배수거동에 근거한 해석이 보다 신뢰할 수 있음을 고찰하였다.

  • PDF

점진성형에서 형상 정밀도에 영향을 미치는 공정 변수 (Effective Process Parameters on Shape Dimensional Accuracy in Incremental Sheet Metal Forming)

  • 강재관;정종윤
    • 산업경영시스템학회지
    • /
    • 제38권4호
    • /
    • pp.177-183
    • /
    • 2015
  • Incremental sheet metal forming is a manufacturing process to produce thin parts using sheet metals by a series of small incremental deformation. The process rarely needs dedicated dies and molds, thus, preparation time for the process is relatively short as to be compared to conventional metal forming. Spring back in sheet metal working is very common, which causes critical errors in dimensions. Incremental sheet metal forming is not fully investigated yet. Hence, incremental sheet metal forming frequently produces inaccurate parts. This paper proposes a method to minimize dimensional errors to improve shape accuracy of products manufactured by incremental forming. This study conducts experiments using an exclusive incremental forming machine and the material for these experiments are sheets of aluminum AL1015. This research defines a process parameter and selects a few factors for the experiments. The parameters employed in this paper are tool feed rate, tool diameter, step depth, material thickness, forming method, dies applied, and tool path method. In addition, their levels for each factor are determined. The plan of the experiments is designed using orthogonal array $L_8$ ($2^7$) which requires minimum number of experiments. Based on the measurements, dimensional errors are collected both on the tool contacted surfaces and on the non-contacted surfaces. The distances between the formed surfaces and the CAD models are scanned and recorded using a commercial software product. These collected data are statistically analyzed and ANOVAs (analysis of variances) are drawn up. From the ANOVAs, this paper concludes that the process parameters of tool diameter, forming depth, and forming method are the significant factors to reduce the errors on the tool contacted surface. On the other hand, the experimental factors of forming method and dies applied are the significant factors on the non-contacted surface. However, the negative forming method always produces better accuracy than the positive forming method.

동적 변형의 회전 성분을 효율적으로 추출하기 위한 실용적 방법 (A Practical Method for Efficient Extraction of the Rotational Part of Dynamic Deformation)

  • 최민규
    • 한국게임학회 논문지
    • /
    • 제18권1호
    • /
    • pp.125-134
    • /
    • 2018
  • 본 논문에서는 시간에 따라 연속적으로 변하는 $3{\times}3$ 행렬의 회전 성분을 효율적으로 추출하는 실용적인 방법을 제안한다. 이는 물리기반 동적 변형을 위하여 널리 사용되는 공회전 유한 요소법이나 형상 맞춤 변형에서 매우 중요한 기술이다. 최근 극분해를 사용하는 시간 독립적인 기존 방법들과 달리 회전행렬 추출을 물리적으로 공식화한 후, 점진적 회전 표현법을 이용하는 반복법이 제안되었다. 본 논문에서는 점진적 회전 벡터의 최대 회전각을 ${\pi}/2$ 이내로 제한함으로써 반복 횟수를 줄이는 최적화 기법을 개발한다. 사실적인 동적 변형 시뮬레이션에서는 충분히 작은 시간 간격을 사용하기 때문에 이러한 제한은 실용적으로 문제가 되지 않는다. 다양한 실험을 통해 제안된 방법의 효율성 및 실용성을 보인다.

파괴역학을 이용한 차륜과 레일의 마모에 관한 연구 (A Study on the Wear of Rail by Fracture Mechanics)

  • 구병춘
    • 한국철도학회:학술대회논문집
    • /
    • 한국철도학회 1998년도 창립기념 춘계학술대회 논문집
    • /
    • pp.315-322
    • /
    • 1998
  • A two dimensional elasto-plastic finite element program taking into account contact between crack surfaces if developed in order to analyze subsurface cracking in rolling contact. But the friction between upper and lower surface of the crack is not considered. Under the assumptions of small deformation and small displacement, the incremental theory of plasticity is used to describe plastic deformation. J-integral is computed as the applied Hertzian load slides over the surface with friction. J-integral is correlated with wear rate of the rail. The propagation rate of the right tip of the surface crack is fast by 45% than that of the left side.

  • PDF

분리형 보강토 옹벽의 개발 및 적용사례 (The Development and Application of KOESWall System)

  • 김영윤
    • 한국지반공학회:학술대회논문집
    • /
    • 한국지반공학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.323-328
    • /
    • 2001
  • In the ordinary reinforced earth wall, which was constructed by incremental construction method, the horizontal deformation of the facing due to the compaction induced horizontal earth pressure was unavoidable. Thus the KOESWall system which are adopted the isolated construction method was developed by I&S Eng. Co., Ltd. in 1999. Due to its systematical feature, KOESWall system is able to minimizes the horizontal deformation of reinforced wall effectively and it can be used as temporary structures more economically without the lacing block. In this report, it is shown that the concept and case histories of KOESWall system as a retaining structures.

  • PDF

유한요소 역해석을 이용한 복잡한 자동차 판넬의 트리밍 라인 설계 (Trimming Line Design of Auto-body Panel with Complex Shape Using Finite Element Inverse Method)

  • 송윤준;한영호;박춘달;정완진
    • 소성∙가공
    • /
    • 제15권6호
    • /
    • pp.459-466
    • /
    • 2006
  • Trimming line design plays an important role in obtaining accurate edge profile after flanging. Compared to the traditional section-based method, simulation-based method can produce more accurate trimming line by considering deformation mechanics. Recently, the use of a finite element inverse method is proposed to obtain optimal trimming line. By analyzing flanging inversely from the final mesh after flanging, trimming line can be obtained from initial mesh on the drawing die surface. Initial guess generation fer finite element inverse method is obtained by developing the final mesh onto drawing tool mesh. Incremental development method is adopted to handle irregular mesh with various size and undercut. In this study, improved incremental development algorithm to handle complex shape is suggested. When developing the final mesh layer by layer, the algorithm which can define the development sequence and the position of developing nodes is thoroughly described. Flanging of front fender is analyzed to demonstrate the effectiveness of the present method. By using section-based trimming line and simulation-based trimming line, incremental finite element simulations are carried out. In comparison with experiment, it is clearly shown that the present method yields more accurate edge profile than section-based method.

보존력(保存力) 및 비보존력(非保存力)을 받는 구조물(構造物)의 기하적(幾何的) 비선형(非線形) 유한요소해석(有限要素解析)을 위한 하중(荷重) 및 변위증분(變位增分) 알고리즘의 개발(開發) (Automatic Load and Displacement Incremental Algorithm for Geometric Non-Linear Finite Element Analysis of the Structure subjected to Conservative and Non-conservative Forces)

  • 김문영;장승필
    • 대한토목학회논문집
    • /
    • 제10권2호
    • /
    • pp.11-22
    • /
    • 1990
  • 본(本) 논문(論文)에서는 보존력(保存力) 및 비보존력(非保存力)을 받는 구조물(構造物)의 비선형(非線形) 유한요소해석(有限要素解析)을 수행(遂行)하기 위하여 기존의 하중증분법(荷重增分法)과 변위증분법(變位增分法)을 효율적(效率的)으로 결합(結合)시킨 수치적(數値的)인 해석(解析)알고리즘을 제시(提示)하였다. 제안(提案)한 알고리즘은 하중증분(荷重增分)과 변위증분(變位增分)이 자동(自動) 생성되도록 하므로써 Snap-Through, Turning-Back과 같은 비선형(非線形) 거동(擧動)을 포함(包含)하는 다양(多樣)한 평형경로(平衡經路)들을 추적(追跡)할 수 있었다.

  • PDF

1.9wt%C 초고탄소 워크롤 단조 공정 : Part II - 기공압착 및 확산접합 (Forging of 1.9wt%C Ultrahigh Carbon Workroll : Part II - Void Closure and Diffusion Bonding)

  • 강성훈;임형철;이호원
    • 소성∙가공
    • /
    • 제22권8호
    • /
    • pp.463-469
    • /
    • 2013
  • In the previous work, a new forging process design, which included incremental upsetting, diffusion bonding and cogging, was suggested as a method to manufacture 1.9wt%C ultrahigh carbon workrolls. The previous study showed that incremental upsetting and diffusion bonding are effective in closing voids and healing of the closed void. In addition, compression tests of the 1.9wt%C ultrahigh carbon steel revealed that new microvoids form within the blocky cementite at temperatures of less than $900^{\circ}C$ and that local melting can occur at temperatures over $1120^{\circ}C$. Thus, the forging temperature should be controlled between 900 and $1120^{\circ}C$. Based on these results, incremental upsetting and diffusion bonding were used to check whether they are effective in closing and healing voids in a 1.9wt%C ultrahigh carbon steel. The incremental upsetting and diffusion bonding were performed using sub-sized specimens of 1.9wt%C ultrahigh carbon steel. The specimen was deformed only in the radial direction during the incremental upsetting until the reduction ratio reached about 45~50%. After deformation the specimens were kept at $1100^{\circ}C$ for the 1 hour in order to obtain a high bonding strength for the closed void. Finally, microstructural observations and tensile tests were conducted to investigate void closure behavior and bonding strength.