• Title/Summary/Keyword: incompressible viscous flow

Search Result 188, Processing Time 0.024 seconds

An Imprevement of the Approximate-Factorization Scheme and Its Application to the Analysis of Incompressible Viscous Flows (근사인자화법의 개량과 비압축성 유동해석에의 응용)

  • 신병록
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1950-1963
    • /
    • 1995
  • A modification of the approximate-factorization method is made to accelerate the convergency rate and to take sufficiently large Courant number without loss of accuracy. And a stable implicit finite-difference scheme for solving the incompressible Navier-Stokes equations employed above modified method is developed. In the present implicit scheme, the volume fluxes with contravariant velocity components and the pressure formulation in curvilinear coordinates is adopted. In order to satisfy the continuity condition completely and to remove spurious errors for the pressure, the Navier-Stokes equations are solved by a modified SMAC scheme using a staggered gird. The upstream-difference scheme such as the QUICK scheme is also employed to the right hand side. The implicit scheme is unconditionally stable and satisfies a diagonally dominant condition for scalar diagonal linear systems of implicit operator on the left hand side. Numerical results for some test calculations of the two-dimensional flow in a square cavity and over a backward-facing step are obtained using both usual approximate-factorization method and the modified one, and compared with each other. It is shown that the present scheme allows a sufficiently large Courant number of O(10$^{2}$) and reduces the computing time.

A 3-Dimensional Numerical Simulation of Impulse Turbine for Wave Energy Conversion

  • Lee, Hyeong-Gu;Lee, Yeon-Won
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.27 no.4
    • /
    • pp.535-541
    • /
    • 2003
  • This paper describes numerical analysis of the impulse turbine with fixed guide vanes, a high performance hi-directional air turbine having simple structure for wane energy conversion. A 3-dimensional incompressible viscous flow numerical analysis based on the full Reynolds-averaged Wavier-Stokes equations was made to investigate the internal flow behavior Numerical results ate compared with experimental data. As a result, a suitable choice for the one of design factors has been clarified.

Aerodynamic Characteristics of 2-D, Unsteady Flow Past a Square Cylinder (Revaluation of SOLA Scheme) (2차원각주의 비정상 공력특성(SOLA스킴의 재평가))

  • 이영호
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.14 no.2
    • /
    • pp.48-65
    • /
    • 1990
  • Numerical solutions of the Navier-Stokes equations, governing 2-dimensional, time-dependent, viscous, incompressible fluid flow past a square cylinde in an infinite region, are presented for Reynolds numbers $10^2$, $10^3$and $10^4$. Finite-difference scheme, based on SOLA-VOF is adopted and a discretization of the convection term for irregular grid is newly suggested by altering the original nonconservation form into conservation one. Distribution of finer grids around the body reveals fairly reasonable consistency with the experimental variables : drag coefficient, lift coefficient, Strouhal number, fluctuating pressure coefficient, etc.

  • PDF

Investigation on the Flowfield Around a Square Cylinder near a Wall (지면에 근접한 정사각주 주변의 유동장 연구)

  • Hwang, Jae-Ho;Park, Young-Whe;Kim, Tae-Yun;Lee, Dong-Ho
    • Proceedings of the KSME Conference
    • /
    • 2001.06e
    • /
    • pp.754-759
    • /
    • 2001
  • This paper presents unsteady computational investigations and wind tunnel tests on the flow field around a square cylinder with a gap between the body and the ground plane. Two-dimensional unsteady, incompressible Navier-Stokes codes are developed for the computation of the viscous turbulent flows. By computing the flow around a square cylinder without ground effect, three two-equation turbulence models are evaluated and the developed code is validated. The results show a good agreement with experimental values and other computational results. Critical gap height at which the formation of Karman vortex streets is interrupted, is demonstrated and another transition regime is pointed out

  • PDF

NUMERICAL SIMULATION OF DAM-BROKEN PROBLEMS USING A PARTICLE METHOD (입자법을 이용한 댐 붕괴의 수치 시뮬레이션)

  • Lee, B.H.;Jung, S.J.;Kim, Y.H.;Park, J.C.
    • Journal of computational fluids engineering
    • /
    • v.13 no.1
    • /
    • pp.28-34
    • /
    • 2008
  • A particle method recognized as one of the gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods for solving the non-linear free-surface motion with complicated boundary shapes. The right-handed side of the governing equations for incompressible fluid, which includes gradient, viscous and external force terms, can be replaced by the particle interaction models. In the present study, the developed method is applied to the dam-broken problem on dried- and wet-floor and its adequacy will be discussed by the comparison with the experimental results.

NUMERICAL SIMULATION OF DAM-BROKEN PROBLEMS USING A PARTICLE METHOD (입자법을 이용한 댐 붕괴의 수치 시뮬레이션)

  • Park, J.C.;Lee, B.H.;Jung, S.J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 2007.10a
    • /
    • pp.258-263
    • /
    • 2007
  • A particle method recognized as one of the gridless methods has been developed to investigate the nonlinear free-surface motions interacting to the structures. The method is more feasible and effective than convectional grid methods for solving the non-linear free-surface motion with complicated boundary shapes. The right-handed side of the governing equations for incompressible fluid, which includes gradient, viscous and external force terms, can be replaced by the particle interaction models. In the present study, the developed method is applied to the dam-broken problem on dried- and wet-floor and its adequacy will be discussed by the comparison with the experimental results.

  • PDF

Finite Element Analysis of Collapse of a Water Dam Using Filling Pattern Technique and Adaptive Grid Refinement of Triangular Elements (삼각형 요소의 형상 충전 및 격자 세분화를 이용한 붕괴하는 물 댐의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.4
    • /
    • pp.395-405
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation for flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among four filling patterns at each triangular control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. Using the proposed numerical technique, the collapse of a water dam has been analyzed to predict flow phenomenon of fluid and the predicted front positions with respect to time have been compared with the reported experimental results.

Three Dimensional Finite Element Analysis of Free Surface Flow Using Filling Pattern Technique and Adaptive Grid Refinement (형상 충전 및 격자 세분화를 이용한 삼차원 자유 표면 유동의 유한 요소 해석)

  • Kim, Ki-Don;Yang, Dong-Yol;Jeong, Jun-Ho
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.28 no.11
    • /
    • pp.1348-1358
    • /
    • 2004
  • The filling pattern and an adaptive grid refinement based on the finite element method and Eulerian mesh advancement approach have been developed to analyze incompressible transient viscous flow with free surfaces. The governing equation fur flow analysis is Navier-Stokes equation including inertia and gravity effects. The mixed FE formulation and predictor-corrector method are used effectively for unsteady numerical simulation. The flow front surface and the volume inflow rate are calculated using the filling pattern technique to select an adequate pattern among seven filling patterns at each tetrahedral control volume. By adaptive grid refinement, the new flow field that renders better prediction in flow surface shape is generated and the velocity field at the flow front part is calculated more exactly. In this domain the elements in the surface region are made finer than those in the remaining regions for more efficient computation. The collapse of a water dam and the filling of a fluidity spiral have been analyzed. The numerical results have been in good agreement with the experimental results and the efficiency of the adaptive grid refinement and filling pattern techniques have been verified.

A New Pressure-Based PISO-Finite Element Method for Navier-Stokes Equations in All Speed Range (Navier-Stokes 점성유동의 전속도 영역 해석을 위한 새로운 압력기반 PISO-유한요소법)

  • Shim E. B.;Chang K. S.
    • Journal of computational fluids engineering
    • /
    • v.1 no.1
    • /
    • pp.112-122
    • /
    • 1996
  • A finite element scheme using the concept of PISO method has been developed to solve the Navier-Stokes viscous flows in all speed range. This scheme includes development of new pressure equation that retains both the hyperbolic term related with the density variation and the elliptic term reflecting the incompressibility constraint. The present method is applied to the incompressible two-dimensional driven cavity flow problems(Re=100, 400 and 1,000). For compressible flows, the Carter plate problem(M=3 and Re=1,000) is computed. Finally, we have simulated the shock-boundary layer interaction(M=2 and Re=2.96×10/sup 5/), a more difficult problem, and compared its results with the experiment to demonstrate the shock capturing capability of the present solution algorithm.

  • PDF

A New Pressure-Based Finite Element Method Applicable to Viscous Flows at All Speed Ranges (모든 속도영역의 점성유동에 적용 가능한 새로운 압력기반 유한요소법)

  • Shim Eun-Bo;Chang Keun-Shik
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1995.10a
    • /
    • pp.169-174
    • /
    • 1995
  • A finite element scheme using the concept of PISO method has been developed to solve the viscous flow problems in all speed range. In this study, new pressure equation is proposed such that both the hyperbolic term related with the density variations and elliptic term reflecting the incompressibility constraint are included. Present method has been applied to incompressible flow in two-dimensional driven cavity(Re=100, 400 and 1,000), and its computed results are compared with other's. Also, Carter plate problem(M=3 and Re=1,000) is computed and the comparison is made with Carter's results. Finally, we simulate a shock-boundary layer interaction problem(M=2 and $Re=2.96{\times}10^5$) to illustrate the shock capturing capability of the present solution algorithm.

  • PDF