• Title/Summary/Keyword: incident clearance

Search Result 12, Processing Time 0.03 seconds

Development of Freeway Traffic Incident Clearance Time Prediction Model by Accident Level (사고등급별 고속도로 교통사고 처리시간 예측모형 개발)

  • LEE, Soong-bong;HAN, Dong Hee;LEE, Young-Ihn
    • Journal of Korean Society of Transportation
    • /
    • v.33 no.5
    • /
    • pp.497-507
    • /
    • 2015
  • Nonrecurrent congestion of freeway was primarily caused by incident. The main cause of incident was known as a traffic accident. Therefore, accurate prediction of traffic incident clearance time is very important in accident management. Traffic accident data on freeway during year 2008 to year 2014 period were analyzed for this study. KNN(K-Nearest Neighbor) algorithm was hired for developing incident clearance time prediction model with the historical traffic accident data. Analysis result of accident data explains the level of accident significantly affect on the incident clearance time. For this reason, incident clearance time was categorized by accident level. Data were sorted by classification of traffic volume, number of lanes and time periods to consider traffic conditions and roadway geometry. Factors affecting incident clearance time were analyzed from the extracted data for identifying similar types of accident. Lastly, weight of detail factors was calculated in order to measure distance metric. Weight was calculated with applying standard method of normal distribution, then incident clearance time was predicted. Prediction result of model showed a lower prediction error(MAPE) than models of previous studies. The improve model developed in this study is expected to contribute to the efficient highway operation management when incident occurs.

Analysis of Incident Impact Factors and Development of SMOGN-DNN Model for Prediction of Incident Clearance Time (돌발상황 처리시간 예측을 위한 영향요인 분석 및 SMOGN-DNN 모델 개발)

  • Yun, Gyu Ri;Bae, Sang Hoon
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.20 no.4
    • /
    • pp.46-56
    • /
    • 2021
  • Predicting the incident clearance time is important for eliminating the high transportation costs and congestion from non-repetitive congestion caused by incidents. In this study, the factors influencing the clearance time suitable for domestic road conditions were analyzed, using a training dataset for predicting the incident clearance time using artificial neural networks. In a previous study, the under-prediction problem for high incident clearance time was used. In the present study, over-sampling training data applied using the SMOGN technique was obtained and applied to the model as a solution. As a result, the DNN model applying the SMOGN technique could compensate for the limitations of the previously developed prediction model by predicting the clearance time with the highest accuracy among the models developed in the research process with MAE = 18.3 minutes.

Stress wave propagation in clearance joints based on characteristics method

  • Tang, Ya-Qiong;Li, Tuan-Jie;Chen, Cong-Cong;Wang, Zuo-Wei
    • Structural Engineering and Mechanics
    • /
    • v.62 no.6
    • /
    • pp.781-788
    • /
    • 2017
  • In this paper, a stress wave model is established to describe the three states (separate, contact and impact) of clearance joints. Based on this stress wave model, the propagation characteristics of stress wave generated in clearance joints is revealed. First, the stress wave model of clearance joints is established based on the viscoelastic theory. Then, the reflection and transmission characteristics of stress wave with different boundaries are studied, and the propagation of stress wave in viscoelastic rods is described by the characteristics method. Finally, the stress wave propagation in clearance joints with three states is analyzed to validate the proposed model and method. The results show the clearance sizes, initial axial speeds and material parameters have important influences on the stress wave propagation, and the new stress waves will generate when the clearance joint in contact and impact states, and there exist some high stress region near contact area of clearance joints when the incident waves are superposed with reflection waves, which may speed up the damage of joints.

Tip Clearance Losses - A Physical Based Scaling Method

  • Pelz, Peter F.;Karstadt, Sascha
    • International Journal of Fluid Machinery and Systems
    • /
    • v.3 no.4
    • /
    • pp.279-284
    • /
    • 2010
  • Tip clearance losses occur in every turbomachine. To estimate the losses in efficiency it is important to understand the mechanism of this secondary flow. Tip clearance losses are mainly caused by a spiral vortex formed on the suction side of the blade of a turbomachine, which induces a drag and also has an influence on the incident flow of the blades. In this paper a physical based scaling method is developed out of an analytical ansatz for the tip clearance losses. This scaling method is validated by measurements on an axial fan with five different tip clearances.

Development of Freeway Incident Duration Prediction Models (고속도로 돌발상황 지속시간 예측모형 개발)

  • 신치현;김정훈
    • Journal of Korean Society of Transportation
    • /
    • v.20 no.3
    • /
    • pp.17-30
    • /
    • 2002
  • Incident duration prediction is one of the most important steps of the overall incident management process. An accurate and reliable estimate of the incident duration can be the main difference between an effective incident management operation and an unacceptable one since, without the knowledge of such time durations, traffic impact can not be estimated or calculated. This research presents several multiple linear regression models for incident duration prediction using data consisting of 384 incident cases. The main source of various incident cases was the Traffic Incident Reports filled out by the Motorist Assistant Units of the Korea Highway Corporation. The models were proposed separately according to the time of day(daytime vs. nighttime) and the fatality/injury incurred (fatality/injury vs. property damage only). Two models using an integrated dataset, one with an intercept and the other without it, were also calibrated and proposed for the generality of model application. Some findings are as follows ; ?Variables such as vehicle turnover, load spills, the number of heavy vehicles involved and the number of blocked lanes were found to significantly affect incident duration times. ?Models, however, tend to overestimate the duration times when a dummy variable, load spill, is used. It was simply because several of load spill incidents had excessively long clearance times. The precision was improved when load spills were further categorized into "small spills" and "large spills" based on the size of vehicles involved. ?Variables such as the number of vehicles involved and the number of blocked lanes found not significant when a regression model was calibrated with an intercept. whereas excluding the intercept from the model structure signifies those variables in a statistical sense.

A Study on the Measurement for the Nano Scale Film Formation of Ultra Low Aspect Ratio

  • Jang Siyoul;Kong Hyunsang
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.283-288
    • /
    • 2004
  • The measurement of ultra low aspect ratio fluid film thickness is very crucial technique both for the verification of lubrication media characteristics and for the clearance design in many precision components such as MEMS, precision bearings and other slideways. Many technologies are applied to the measurement of ultra low aspect ratio fluid film thickness (i.e. elastohydrodynamic lubrication film thickness). In particular, in-situ optical interferometric method has many advantages in making the actual contact behaviors realized with the experimental apparatus. This measurement method also does the monitoring of the surface defects and fractures happening during the contact behavior, which are delicately influenced by the surface conditions such as load, velocity, lubricant media as well as surface roughness. Careful selection of incident lights greatly enhances the fringe resolutions up to $\~1.0$ nanometer scale with digital image processing technology. In this work, it is found that coaxial aligning trichromatic incident light filtering system developed by the author can provide much finer resolution of ultra low aspect ratio fluid film thickness than monochromatic or dichromatic incident lights, because it has much more spectrums of color components to be discriminated according the variations of film thickness. For the measured interferometric images of ultra low aspect ratio fluid film thickness it is shown how the film thickness is finely digitalized and measured in nanometer scale with digital image processing technology and space layer method. The developed measurement system can make it possible to visualize the contact deformations and possible fractures of contacting surface under the repeated loading condition.

  • PDF

Estimating Carbon Emissions due to Freeway Incidents by Using Macroscopic Traffic Flow Models (거시적 교통류모형을 이용한 고속도로 돌발상황에 따른 탄소배출량 산정연구)

  • Son, Young Tae;Han, Kyu Jong
    • International Journal of Highway Engineering
    • /
    • v.18 no.1
    • /
    • pp.119-129
    • /
    • 2016
  • PURPOSES : The purpose of this study is to develop a methodology for estimating additional carbon emissions due to freeway incidents. METHODS : As our country grows, our highway policy has mainly neglected the environmental and social sectors. However, with the formation of a national green growth keynote and an increase in the number of people interested in environmental and social issues, problems related to social issues, such as traffic accidents and congestion, and environmental issues, such as the impact of air pollution caused by exhaust gases that are emitted from highway vehicles, are beginning to be discussed. Accordingly, studies have been conducted on a variety of environmental aspects in the field of road transport, and for the quantitative calculation of greenhouse gas emissions, using various methods. However, in order to observe the effects of carbon emissions, microscopic simulations must use many difficult variables such as cost, analysis time, and ease of analysis process. In this study, additional greenhouse gas emissions that occur because of highway traffic accidents were classified by type (incident handling time, number of lanes blocked, freeway level of service), and the annual additional emissions based on incidents were calculated. According to the results, congestion length and emissions tend to increase with an increase in incident clearance time, number of occupied lanes, and worsening level of service. Using this data, we analyzed accident data on the Gyeong-bu Expressway (Yang-Jae IC - Osan IC) for a year. RESULTS : Additional greenhouse gas emissions that occur because of highway traffic accidents were classified by type (incident handling time, number of lanes blocked, freeway level of service) and annual additional emissions caused by accidents were calculated. CONCLUSIONS : In this study, a methodology for estimating carbon emissions due to freeway incidents was developed that incorporates macroscopic flow models. The results of the study are organized in the form of a look-Up table that calculates carbon emissions rather easily.

The prediction Models for Clearance Times for the unexpected Incidences According to Traffic Accident Classifications in Highway (고속도로 사고등급별 돌발상황 처리시간 예측모형 및 의사결정나무 개발)

  • Ha, Oh-Keun;Park, Dong-Joo;Won, Jai-Mu;Jung, Chul-Ho
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.9 no.1
    • /
    • pp.101-110
    • /
    • 2010
  • In this study, a prediction model for incident reaction time was developed so that we can cope with the increasing demand for information related to the accident reaction time. For this, the time for dealing with accidents and dependent variables were classified into incident grade, A, B, and C. Then, fifteen independent variables including traffic volume, number of accident-related vehicles and the accidents time zone were utilized. As a result, traffic volume, possibility of including heavy vehicles, and an accident time zone were found as important variables. The results showed that the model has some degree of explanatory power. In addition, when the CHAID Technique was applied, the Answer Tree was constructed based on the variables included in the prediction model for incident reaction time. Using the developed Answer Tree model, accidents firstly were classified into grades A, B, and C. In the secondary classification, they were grouped according to the traffic volume. This study is expected to make a contribution to provide expressway users with quicker and more effective traffic information through the prediction model for incident reaction time and the Answer Tree, when incidents happen on expressway

An Analytic Study of the cognitive features of the Korean civilian pilot-ATC controller aviation English language use which affects job performance (국내 민간조종사-관제사의 항공영어 수용오류의 인지적 특성측정 및 평가)

  • Sin, Hyon-Sam
    • Journal of the Korea Safety Management & Science
    • /
    • v.9 no.6
    • /
    • pp.81-88
    • /
    • 2007
  • This study deals with the overall meta-cognitive aspects of ATC-Pilot miscommunications pertinent to cognitive human errors based on the previous literature research which it has been focused on the issue of the global aviation English use in regard with aircraft accident and incident. Especially, it addresses the concern over the ICAO aviation English language proficiency evaluation program which will be implemented globally in March, 2008. In addition, It presents the analysis related to the on-going English language proficiency level four test conducted for Korean civil airlines pilots and air traffic controllers.

Acquired resistance of rock bream (Oplegnathus fasciatus) against rock bream iridovirus (RBIV) through undergoing low water temperature period

  • Zenke, Kosuke;Yoon, Ki Joon;Kim, Min Sun;Choi, Seung Hyuk;Kim, Ki Hong
    • Journal of fish pathology
    • /
    • v.27 no.2
    • /
    • pp.85-89
    • /
    • 2014
  • Water temperature is a key environmental factor controlling the epizootics of viral diseases in fish. High water temperature is associated with the rapid spread of rock bream iridovirus (RBIV) disease and with high mortality of RBIV infected fish. Although protection of fish against iridoviral disease by active immunization has been reported, little information is available concerning whether fish survived from an epizootic of iridoviral disease can naturally acquire resistance against the viral disease. In the present study, we have demonstrated that juvenile rock bream, which survived from a natural epizootic of RBIV, acquired resistance against recurrence or reinfection of RBIV, and this resistance was established during the subsequent low water temperature period. Furthermore, the possible involvement of the adaptive humoral immune response in the resistance of the juvenile rock bream was suggested by in vivo neutralization experiment.