In this paper, a vehicle recognition algorithm based on deep convolutional neural network and compression dictionary is proposed. Firstly, the network structure of fine vehicle recognition based on convolutional neural network is introduced. Then, a vehicle recognition system based on multi-scale pyramid convolutional neural network is constructed. The contribution of different networks to the recognition results is adjusted by the adaptive fusion method that adjusts the network according to the recognition accuracy of a single network. The proportion of output in the network output of the entire multiscale network. Then, the compressed dictionary learning and the data dimension reduction are carried out using the effective block structure method combined with very sparse random projection matrix, which solves the computational complexity caused by high-dimensional features and shortens the dictionary learning time. Finally, the sparse representation classification method is used to realize vehicle type recognition. The experimental results show that the detection effect of the proposed algorithm is stable in sunny, cloudy and rainy weather, and it has strong adaptability to typical application scenarios such as occlusion and blurring, with an average recognition rate of more than 95%.
최근 차량용 네트워크 시스템으로 사용되고 있는 CAN(Controller Area Network)은 많은 ECU들이 필요한 미래형 스마트차량에 적합한 네트워크 프로토콜로서 안정성과 신뢰성을 보장해주며, 많은 ECU들의 장착으로 Wiring Harness의 공간과 중량이 늘어남으로 인해 발생되는 에너지 소비와 비용의 증가를 대폭 줄일 수 있는 것으로 나타났다. 본 논문에서는 CAN프로토콜을 이용하여 미래형 스마트 자동차에 요구되는 편의주행, 쾌적주행을 위해 Air conditioner 와 Heater를 제어하여 차량 내부 온도를 운전자의 요구에 맞도록 자동으로 제어할 수 있는 시스템을 구현하고자 한다.
The architecture of WSN based Vehicle Speed Measurement System is presented in this paper from Telematics Sensor Network(TSN) to Management System. To verify the feasibility of the system, we implemented the vehicle speed measurement system and evaluated the accuracy of velocity measured by the system in our testbed, an old highway located near Kyungbu highway. The system performed over 95% of accuracy at 80kmph from the measurement. In addition, the battery life time of the sensor node was evaluated by simulation analysis with real measured current consumption profiles. Assuming the maximum average daily traffic in 2005, the battery life time is expected to be over 1.6 year from the simulation result.
This study considers the implementation issues of the inter-vehicle communication system for the vehicle platoon experiments via a testbed. The testbed, which consists of three scale vehicles and one RCS(remote control station), is developed as a tool for functions evaluation between simulation studies and full-sized vehicle researches in the previous study. The cooperative communication of the vehicle-to-vehicle or the vehicle-to-roadside plays a key role for keeping the relative spacing of vehicles small in a vehicle platoon. The static platoon control, where the number of vehicles remains constant, is sufficient for the information to be transmitted in the suitably fixed interval, while the dynamic platoon control such as merge or split requires more flexible network architecture for the dynamical coordination of the communication sequence. In this study, the wireless communication device and the reliable protocol of the flexible network architecture are implemented for our testbed, using the low-cost, ISM band transceiver and the 8-bit microcontroller.
In order to satisfy the requirements of time reduction and cost saving for development of electronic control systems(ECU) in automotive industry, the applications of a standardized real-time operating system(RTOS) and a communication protocol to ECUs are increased. In this study, a body control module(BCM) that employs OSEK/VDX(open system and corresponding interfaces for automotive electronics/vehicle distributed executive) OS tour the RTOS and a controller area network(CAN) fur the communication protocol is designed, and the performances of the system are evaluated. The BCM controls doors, mirrors, and windows of the vehicle through the in-vehicle network. To identify all the transmitted and received control messages, a PC connected with the CAN communication protocol behaves as a CAN bus emulator. The control system based upon in-vehicle network improves the system stability and reduces the number of wiring harness. Furthermore it is easy to maintain and simple to add new features because the system is designed based on the standards of RTOS and communication protocol.
As increasing the number of Electronic Control Units in a vehicle, the proportion for reliability and stability of the software is going increasingly. Accordingly, the traditional CAN network has occurred the situation that the requirement of developing vehicle software is not sufficient. To solve these problems, the FlexRay network which is ensured the high bandwidth and real-time is generated. However it is difficult to implement FlexRay based application software because of complex protocol than traditional CAN network. Accordingly the system for analysis and verification of network state is needed. Also vehicle vendor develops application software using Matlab/Simulink in order to increase productivity. But this development method is hard to solve the network problem of node to node. Therefore this paper implements Matlab/Simulink based FlexRay network system and verifies it through comparing with existing embedded system.
This paper presents a new approach to the design of intelligent control system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. It is proposed a learning controller consisting of two neural network-fuzzy based on independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.
요즘 차량 네비게이션 시스템은 큰 관심 분야이다. GNSS(Global Navigation Satellite System)은 실외 측위를 위한 기술 중 핵심적인 기술이다. 그러나 GNSS는 높은 정확도와 신뢰도를 제공하지 못한다. 이러한 이유로, 우리는 차량의 GNSS 성능의 정확도를 향상시키기 위하여 Network-RTK를 적용하였다. 이 Network-RTK 모드에서 GNSS 에러는 급격히 감소하게 된다. 본 논문에서 우리는 ntrip client 프로그램을 설명하고 다양한 환경에서의 실험 결과를 보여준다.
This paper presents a now approach to the design of intelligent contorl system for track vehicle system using fuzzy logic based on neural network. The proposed control scheme uses a Gaussian function as a unit function in the neural network-fuzzy, and back propagation algorithm to train the fuzzy-neural network controller in the framework of the specialized learning architecture. Moreover, We develop a Windows 95 version dynamic simulator which can simulate a track vehicle model in 3D graphics space. It is proposed a learning controller consisting of two neural network-fuzzy based of independent reasoning and a connection net with fixed weights to simply the neural networks-fuzzy. The dynamic simulator for track vehicle is developed by Microsoft Visual C++. Graphic libraries, OpenGL, by Silicon Graphics, Inc. were utilized for 3D Graphics. The performance of the proposed controller is illustrated by simulation for trajectory tracking of track vehicle speed.
This paper describes a methodology using neural network to compensate the nonlinear error of deriving speed for electric differential system included in electric vehicle. An electric differential system which drives each of the left and right wheels of the electric vehicle independently. The electric vehicle driven by induction motor has the nonlinear speed error which depends on a steering angle and speed command. When a vehicle drives along a curved road lane, the speed unblance of inner and outer wheels makes vehicles vibration and speed reduction. To compensate for the speed error, we collected the speed data of the inner wheel and outer wheel in various speed and the steering angle data by using an manufactured electric vehicle and the real system. According to the analysis of the acquisited data, we designed the differential speed control system based on a speed error compensator using neural network.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.