• Title/Summary/Keyword: in-situ stress field

Search Result 86, Processing Time 0.023 seconds

Study on characteristics of initial rock stress state at shallow depth of the gneiss region in the central part of seoul (서울 중심부 편마암 분포지역 저심도 구간의 암반 초기응력 분포특성 연구)

  • Bae, Seong-ho;Jeon, Seok-won;Choi, Yong-Kun;Kim, Jae-min
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.5 no.2
    • /
    • pp.147-159
    • /
    • 2003
  • Since early in the 90's, as the need for construction of underground rock structures has been largely increased, the in-situ rock stress measurement has been widely carried out to provide the quantitative information on the initial stress state of test site at the design stage of underground rock structures. Among the diverse method developed for measuring rock stress, hydraulic fracturing method is most popularly used because it is applicable at pre-construction stage and has no limit in testing depth. In this paper a study on initial rock stress state at shallow depth of the plain gneiss region in the central part of Seoul was performed on the basis of the in-situ hydraulic fracturing stress measurement results from the 11 test boreholes. And overall characteristics of the initial stress field of the study area are discussed.

  • PDF

Internal Stress/Strain Analysis during Fatigue Crack Growth Retardation Using Neutron Diffraction (피로 균열 성장 지연에 대한 중성자 회절 응력 분석)

  • Seo, Sukho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.28 no.7
    • /
    • pp.398-404
    • /
    • 2018
  • Fatigue crack growth retardation of 304 L stainless steel is studied using a neutron diffraction method. Three orthogonal strain components(crack growth, crack opening, and through-thickness direction) are measured in the vicinity of the crack tip along the crack propagation direction. The residual strain profiles (1) at the mid-thickness and (2) at the 1.5 mm away from the mid-thickness of the compact tension(CT) specimen are compared. Residual lattice strains at the 1.5 mm location are slightly higher than at the mid-thickness. The CT specimen is deformed in situ under applied loads, thereby providing evolution of the internal stress fields around the crack tip. A tensile overload results in an increased magnitude of the compressive residual stress field. In the crack growth retardation, it is found that the stresses are dispersed in the crack-wake region, where the highest compressive residual stresses are measured. Our neutron diffraction mapping results reveal that the dominant mechanism is by interrupting the transfer of stress concentration at the crack tip.

A Study on Key Parameters and Distribution Range in Rock Mechanics for HLW Geological Disposal (고준위방사성폐기물 심층처분을 위한 암반공학분야 핵심 평가인자 및 분포범위 연구)

  • Dae-Sung, Cheon;Won-kyong, Song;You Hong, Kihm;Kwangmin, Jin;Seungbeom, Choi
    • Tunnel and Underground Space
    • /
    • v.32 no.6
    • /
    • pp.530-548
    • /
    • 2022
  • The site selection process for deep geological disposal of high-level radioactive waste will be conducted in stages, and 103 evaluation parameters related to site selection have been proposed. In the field of rock mechanics and rock engineering, there are 33 evaluation parameters for intact rock, joint and rock mass, and they are applied in the basic and detailed investigation stages. In this report, uniaxial compressive strength, in-situ stress, joint distribution, and rock mass classification were selected as the main evaluation parameters, and among them, uniaxial compressive strength and in situ stress were selected as key evaluation parameters. Statistical techniques or regression analysis were performed for granite in Wonju and Chuncheon to evaluate the distribution range for the selected key evaluation parameters. The average of the uniaxial compressive strength in the Wonju area estimated through the posterior distribution is about 171 MPa, and about 123 MPa in the Chuncheon area. The maximum in situ stress acting in the Wonju area was less than 30 MPa and less than 40 MPa in the Chuncheon area. The direction of the maximum horizontal stress calculated by regression analysis was 101° in Wonju, and in the case of Chuncheon, it was 95°, respectiviely.

Electrorheology of conducting polyaniline-$BaTiO_3$ composite

  • Kim Ji-Hye;Fang Fei Fei;Lee Ki-Bo;Choi Hyoung-Jin
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.2
    • /
    • pp.103-107
    • /
    • 2006
  • Organic-inorganic composite of polyaniline and barium titanate (PANI-$BaTiO_3$) was synthesized via an in-situ oxidation polymerization of aniline in the presence of barium titanate ($BaTiO_3$) nanoparticles dispersed in an acidic medium. Barium titanate has large electric resistance and relatively high dielectric constant which is one of the essential properties for its electrorheological (ER) applications. The microstructure and composition of the obtained PANI/$BaTiO_3$ composite were characterized by SEM, FT-IR and XRD. In addition, we also employed a rotational rheometer to investigate the rheological performance of the ER fluids based on both pure PANI particle and PANI/$BaTiO_3$ composite. It was found that the composite materials possess much higher yield stresses than the pristine PANI due to unique dielectric properties of the inorganic $BaTiO_3$ particles. Finally, we also examined dynamic yield stress by analyzing its extrapolated yield stress data as a function of electric field strengths. Using the critical electric field strengths deduced, we further found that the universal yield stress equation collapses their data onto a single curve.

Mechanical properties of stabilized saline soil as road embankment filling material

  • Li Wei;Shouxi Chai;Pei Wang
    • Geomechanics and Engineering
    • /
    • v.37 no.5
    • /
    • pp.499-510
    • /
    • 2024
  • In northern China, abundant summer rainfall and a higher water table can weaken the soil due to salt heave, collapsibility, and increased moisture absorption, thus the chlorine saline soil (silty clay) needs to be stabilized prior to use in road embankments. To optimize chlorine saline soil stabilizing programs, unconfined compressive strength tests were conducted on soil treated with five different stabilizers before and after soaking, followed by field compaction test and unconfined compressive strength test on a trial road embankment. In situ testing were performed with the stabilized soils in an expressway embankment, and the results demonstrated that the stabilized soil with lime and SH agent (an organic stabilizer composed of modified polyvinyl alcohol and water) is suitable for road embankments. The appropriate addition ratio of stabilized soil is 10% lime and 0.9% SH agent. SH agent wrapped soil particles, filled soil pores, and generated a silk-like web to improve the moisture stability, strength, and stress-strain performance of stabilized soil.

Measurement of Small-Strain Shear Modulus Using Pressuremeter Test (공내재하시험기를 이용한 미소변형 전단탄성계수 측정)

  • Kim, Dong-Su;Park, Jae-Yeong;Lee, Won-Taek
    • Geotechnical Engineering
    • /
    • v.13 no.4
    • /
    • pp.109-120
    • /
    • 1997
  • In the working stress conditions, the strain level in a soil mass experienced by existing structures and during construction is less than about 0.1-1%. In order to analyse the deformational behavior accurately, the in-situ testing technique which provides the reliable deformational characteristics at small strains, needs to be developed. The purpose of this paper is to measure the small-strain shear modulus of soils by using pressuremeter test(PMT). PMT is a unique method for assessing directly the in-situ shear modulus of soils with strain amplitude. For the accurate small strain measurements without initial disturbance effect, the unloading-reloading cycle was used and the measured modulus was corrected in view of the relevant stress and strain levels around the PMT probe during testing. Not only in the calibration chamber but in the field, PMT tests were performed on the cohesionless soils. The variation in shear modulus with strain amplitude ranging from 10-2% to 0.5% was reliably determined by PMT PMT results were also compared with other in-situ and laboratory test results. Moduli obtained from different testing techniques matched very well if the effect of strain amplitude was considered in the com pall son.

  • PDF

Estimation of principle stress field by Televiewer data analysis (텔레뷰어 자료분석을 통한 암반 내 수평 주응력 방향 산출)

  • Kim, Jung-Yul;Kim, Yoo-Sung;Nam, Ji-Yeon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2004.03b
    • /
    • pp.815-822
    • /
    • 2004
  • A knowledge of in situ stress state is important to design various engineering structures such as dams, tunnels and so on. There are about three wellknown indicators that is, borehole will breakouts, hydraulic fracturing, ellipsoidal cross section of borehole that have been attributed to the state of stress in the vicinity of borehole. Fortunately, Televiewer traveltime image can be used as a caliper log with 144 or 288 arms, which allows to determine the borehole shape. Televiewer amplitude image will give detailed information about the distribution and character of breakouts and hydraulic fracturing as well. For investigation purposes, a series of boreholes(total 195 boreholes: 12.239m) that have been logged all over the country during past 10 years are analyzed. The primary objective of this paper are to examnine the ability of a Televiewer to determine the shape of borehole, to present data inferred by stress indicators, to indicate their possible relationship with the anisotropic horizontal stresses. It is shown that in most cases the fracture orientation statistically estimated from observed fractures denotes an excellent correlation with the orientations inferred by stress indicators. Many intervals of breakouts are terminated at the intersection of oblique fracture with the borehole. The results from Televiewer data are further compared with those of hydraulic fracturing techniques.

  • PDF

Fatigue Crack-Tip Stress Mapping Using Neutron Diffraction

  • Choi, Gyudong;Lee, Min-Ho;Huang, E-Wen;Woo, Wanchuck;Lee, Soo Yeol
    • Korean Journal of Materials Research
    • /
    • v.25 no.12
    • /
    • pp.690-693
    • /
    • 2015
  • Fatigue crack growth experiments were carried out on a 304 L stainless steel compact-tension(CT) specimen under load control mode. Neutron diffraction was employed to quantitatively measure the residual strains/stresses and the evolution of stress fields in the vicinity of a propagating fatigue-crack tip. Three principal stress components (i.e. crack growth, crack opening, and through-thickness direction stresses) were examined in-situ under loading as a function of distance from the crack tip along the crack-propagation path. The stress/strain fields, measured both at the mid-thickness and near the surface of the CT specimen, were compared. The results show that much higher compressive residual stress fields developed in front of the crack tip near the surface than developed at the mid-thickness area. The change of the stresses ahead of the crack tip under loading is more significant at the mid-thickness area than it is near the surface.

Neotectonic Crustal Deformation and Current Stress Field in the Korean Peninsula and Their Tectonic Implications: A Review (한반도 신기 지각변형과 현생 응력장 그리고 지구조적 의미: 논평)

  • Kim, Min-Cheol;Jung, Soohwan;Yoon, Sangwon;Jeong, Rae-Yoon;Song, Cheol Woo;Son, Moon
    • The Journal of the Petrological Society of Korea
    • /
    • v.25 no.3
    • /
    • pp.169-193
    • /
    • 2016
  • In order to characterize the Neotectonic crustal deformation and current stress field in and around the Korean Peninsula and to interpret their tectonic implications, this paper synthetically analyzes the previous Quaternary fault and focal mechanism solution data and recent geotechnical in-situ stress data and examines the characteristics of crustal deformations and tectonic settings in and around East Asia after the Miocene. Most of the Quaternary fault outcrops in SE Korea occur along major inherited fault zones and show a NS-striking top-to-the-west thrust geometry, indicating that the faults were produced by local reactivation of appropriately oriented preexisting weaknesses under EW-trending pure compressional stress field. The focal mechanism solutions in and around the Korean Peninsula disclose that strike-slip faulting containing some reverse-slip component and reverse-slip faulting are significantly dominant on land and in sea area, respectively. The P-axes are horizontally clustered in ENE-WSW direction, whereas the T-axes are girdle-distributed in NNW direction. The geotechnical in-situ stress data in South Korea also indicate the ENE-trending maximum horizontal stress. The current crustal deformation in the Korean Peninsula is thus characterized by crustal contraction under regional ENE-WSW or E-W compression stress field. Based on the regional stress trajectories in and around East Asia, the current stress regime is interpreted to have resulted from the cooperation of westward shallow subduction of the Pacific Plate and collision of Indian and Eurasian continents, whereas the Philippine Sea plate have not a decisive effect on the stress-regime in the Korean Peninsula due to its high-angle subduction that resulted in dominant crust extension of the back-arc region. It is also interpreted that the Neotectonic crustal deformation and present-day tectonic setting of East Asia commenced with the change of the Pacific Plate motion during 5~3.2 Ma.

Effect of confining stress on representative elementary volume of jointed rock masses

  • Wu, Na;Liang, Zhengzhao;Li, Yingchun;Qian, Xikun;Gong, Bin
    • Geomechanics and Engineering
    • /
    • v.18 no.6
    • /
    • pp.627-638
    • /
    • 2019
  • Estimation of representative elementary volume (REV) of jointed rock masses is critical to predict the mechanical behavior of field-scale rock masses. The REV of jointed rock masses at site is strongly influenced by stress state. The paper proposed a method to systematically studied the influence of confining stress on the REV of jointed rock masses with various strengths (weak, medium and strong), which were sourced from the water inlet slope of Xiaowan Hydropower Station, China. A finite element method considering material heterogeneity was employed, a series of two-dimensional (2D) models was established based on the Monte-Carlo method and a lot of biaxial compressive tests were conducted. Numerical results showed that the REV of jointed rock masses presented a step-like reduction as the normalized confining stress increased. Confining stress weakened the size effect of jointed rock masses, indicating that the REV determined under uniaxial compression test can be reasonably taken as the REV of jointed rock masses under complexed in-situ stress environment.