DOI QR코드

DOI QR Code

Mechanical properties of stabilized saline soil as road embankment filling material

  • Li Wei (School of Civil Engineering, Tianjin Chengjian University) ;
  • Shouxi Chai (School of Geology and Geomatics, Tianjin Chengjian University) ;
  • Pei Wang (School of Geology and Geomatics, Tianjin Chengjian University)
  • Received : 2023.12.29
  • Accepted : 2024.05.13
  • Published : 2024.06.10

Abstract

In northern China, abundant summer rainfall and a higher water table can weaken the soil due to salt heave, collapsibility, and increased moisture absorption, thus the chlorine saline soil (silty clay) needs to be stabilized prior to use in road embankments. To optimize chlorine saline soil stabilizing programs, unconfined compressive strength tests were conducted on soil treated with five different stabilizers before and after soaking, followed by field compaction test and unconfined compressive strength test on a trial road embankment. In situ testing were performed with the stabilized soils in an expressway embankment, and the results demonstrated that the stabilized soil with lime and SH agent (an organic stabilizer composed of modified polyvinyl alcohol and water) is suitable for road embankments. The appropriate addition ratio of stabilized soil is 10% lime and 0.9% SH agent. SH agent wrapped soil particles, filled soil pores, and generated a silk-like web to improve the moisture stability, strength, and stress-strain performance of stabilized soil.

Keywords

Acknowledgement

The authors are grateful to Tianjin Key Laboratory of Soft Soil Characteristics and Engineering Environment of Tianjin Chengjian University for their support.

References

  1. Abdallah, H.M., Rabab'Ah, S.R., Taamneh, M.M., Taamneh, M.O. and Shadi, H. (2023), "Effect of zeolitic tuff on strength, resilient modulus, and permanent strain of lime-stabilized expansive subgrade soil", J. Mater. Civil Eng., 35(5), 4023081. http://doi.org/10.1061/(ASCE)MT.1943-5533.0004710.
  2. Abdi, M.R. and Mirzaeifar, H. (2016), "Effects of discrete short polypropylene fibers on behavior of artificially cemented kaolinite", Int. J. Civil Eng., 14(4), 253-262. https://doiorg/10.1007/s40999-016-0022-5.
  3. Amir, S., Robert, D.J., Brian, O., Sujeeva, S., Anoop, S. and Frank, T. (2023), "Investigation of enzyme-based soil stabilization in field application", J. Mater. Civil Eng., 35(5), 4023086. https://doi.org/10.1061/(ASCE)MT.1943-5533.0004742.
  4. Baghini, M.S., Ismail, A., Naseralavi, S.S. and Firoozi, A.A. (2014), "Performance evaluation of road base stabilized with styrene-butadiene copolymer latex and Portland cement", Int. J. Pavement Res. Tech., 9(4), 321-336. https://doi.org/10.1016/j.conbuildmat.2014.06.061.
  5. Baldovino, J.A., Moreira, E.B., Teixeira, W., Izzo, R.L.S. and Rose, J.L. (2018), "Effects of lime addition on geotechnical properties of sedimentary soil in Curitiba, Brazil", J. Rock Mech. Geotech. Eng., 10(1), 188-194. https://doi.org/10.1016/j.jrmge.2017.10.001.
  6. Berkowitza, J.F., VanZomerena, C.M., Piercya, C.D. and Whiteb, J.R. (2018), "Evaluation of coastal wetland soil properties in a degrading marsh. Estuarine", Coast. Shelf Sci., 212, 311-317. https://doi.org/10.1016/j.ecss.2018.07.021.
  7. Bozbey, I., Kelesoglu, M.K., Oztoprak, S., Komut, M., Comez, S., Ozturk, T., Mert, A. and Ocal, K. (2021), "Effects of soaking on a lime stabilized clay and implications for pavement design", Geomech. Eng., 24(2), 115-127. https://doi.org/10.12989/gae.2021.24.2.115.
  8. Chai, S.X. (2006), "Study on the special properties of strength of solidified saline soil in inshore", Ph.D. Dissertation, Lanzhou University, Lanzhou, China.
  9. Driss, A.A.E., Harichane, K., Ghrici, M., Sert, S. and Bol, E. (2023), "Effect of natural pozzolana on the unconsolidated undrained shear strength of a lime-stabilized clay soil", Int. J. Civil Eng., 21, 1007-1026. https://doi.org/10.1007/s40999-023-00817-5.
  10. Esmaeili, M., Naderi, B., Kalantar, H. and Khodaverdian, N. (2018), "Investigating the effect of geogrid on stabilization of high railway embankments", Soils Found., 58(2), 319-332. https://doi.org/10.1016/j.sandf.2018.02.005.
  11. GB/T50123 (2019), Standard for geotechnical testing method. Ministry of Housing and Urban-rural Development of the Peoples Republic of China; Beijing, China.
  12. Gilazghi, S.T., Huang, J. and Rezaeimalek, S. (2016), "Stabilizing sulfate-rich high plasticity clay with moisture activated polymerization", Eng. Geol., 211, 171-178. https://doi.org/10.1016/j.enggeo.2016.07.007.
  13. Jin, H., Zhang, G. and Yang, Y. (2021), "Experimental and numerical study on behavior of retaining structure with limited soil", Geomech. Eng., 26(1), 77-88. https://doi.org/10.12989/gae.2021.26.1.077.
  14. JTG E60 (2008), Field test methods of subgrade and pavement for highway engineering, Ministry of Transport of the People's Republic of China; Beijing, China.
  15. JTG D30 (2015), Specifications for Design of Highway Subgrades. Ministry of Transport of the People's Republic of China; Beijing, China.
  16. JTG/T F20 (2015), Technical Guidelines for Construction of Highway Roadbases. Ministry of Transport of the People's Republic of China; Beijing, China.
  17. Kannan, G. and Sujatha, E.R. (2022), "Geotechnical behaviour of nano-silica stabilized organic soil", Geomech. Eng., 28(3), 239-253. https://doi.org/10.12989/gae.2022.28.3.239.
  18. Okonta, F.N. and Nxumalo, S.P. (2022), "Strength properties of lime stabilized and fibre reinforced residual soil", Geomech. Eng., 28(1), 38-48. https://doi.org/10.12989/gae.2022.28.1.035.
  19. Pastor Navarro, J.L., Chai, J.C. and Isidro, S. (2023), "Strength and microstructure of a clayey soil stabilized with natural stone industry waste and lime or cement", Appl. Sci., 13, 2583, 1-18. https://doi.org/10.3390/app13042583.
  20. Phanikumar, B.R. and Raju, E.R. (2020), "Compaction and strength characteristics of an expansive clay stabilised with lime sludge and cement", Soils Found., 60(1), 129-138. https://doi.org/10.1016/j.sandf.2020.01.007.
  21. Ramesh, H.N., Kulkarni, M.G.R., Raghunandan, M.E. and Nethravathi, S. (2022), "Suitability of bagasse ash-lime mixture for the stabilization of black cotton soil", Geomech. Eng., 28(3), 255-263. https://doi.org/10.12989/gae.2022.28.3.255.
  22. Sharma, L.K., Sirdesai, N.N., Sharma, K.M. and Singh, T.N. (2018), "Experimental study to examine the independent roles of lime and cement on the stabilization of a mountain soil: A comparative study", Appl. Clay Sci., 152(2), 183-195. http://doi.org/10.1002/2014GL061231.
  23. Shen, J., Wang, Q., Chen, Y., Han, Y., Zhang, X. and Liu, Y. (2022), "Evolution process of the microstructure of saline soil with different compaction degrees during freeze-thaw cycles", Eng. Geol., 304, 106699. https://doi.org/10.1016/j.enggeo.2022.106699.
  24. Shivanshi, A.K. Jha and Akhtar, M.P. (2023), "Investigating effect of soluble sodium sulphate contamination on swell behaviour of untreated and lime-treated soil", Indian Geotech. J., 53, 1114-1128. https://doi.org/10.1007/s40098-023-00731-6.
  25. Sukmak, G., Sukmak, P., Horpibulsuk, S., Arulrajah, A. and Horpibulsuk, J. (2023), "Generalized strength prediction equation for cement stabilized clayey soils". Appl. Clay Sci., 231(1), 106761.1-106761.9. https://doi.org/10.1016/j.clay.2022.106761.
  26. Toprak, B., Base, S. and Kalkanl, I. (2021), "Effects of fly ash column treatment of HP clayey soils on seismic behavior of R/C structures", Geomech. Eng., 25(6), 473-480. https://doi.org/10.12989/gae.2021.25.6.473.
  27. Wang, F., Peng, S.Q., Fan, L. and Li, Y. (2022), "Mechanism of pore relative humidity on salt swelling characteristics in sulfate saline soil", Alexandria Eng. J., 61(2), 4963-4976. https://doi.org/10.1016/j.aej.2021.09.062.
  28. Wang, Y.L., Chai, S.X. and Li, M. (2018), "Rain erosion resistance of debris flow fan sprayed by SH agent on surface", J. Eng. Geol., 26(2), 334-340. https://doi.org/10.13544/j.cnki.jeg.2017-015.
  29. Wei, L., Chai, S.X., Guo, Q.L., Wang, P. and Li, F. (2020), "Mechanical properties and stabilizing mechanism of stabilized saline soils with four stabilizers", Bull. Eng. Geol. Environ., 79, 5341-5354. https://doi.org/10.1007/s10064-020-01885-w.
  30. Wei, L. and Chai, S.X. (2018), "Evaluation of solidifying effect of SH agent on inshore saline soils", J. Eng. Geol., 26(2), 407-415. https://doi.org/10.13544/j.cnki.jeg.2017-004.
  31. Yousif, A.S. and Mustafa, F.S. (2021), "Behavior of saline soil stabilized with polypropylene fiber and cement", Kufa J. Eng., 12(1), 29-47. https://doi.org/10.30572/2018/kje/120103.
  32. Zhang, X., Pang, S., Su, L., Geng, J., Liu, J. and Cai, G. (2022), "Triaxial mechanical properties and microscopic characterization of fiber-reinforced cement stabilized aeolian sand-coal gangue blends", Constr. Build. Mater., 346(5), 1-13. https://doi.org/10.1016/j.conbuildmat.2022.128481.