• 제목/요약/키워드: in-situ observation

검색결과 270건 처리시간 0.026초

한반도 연안에서의 12.5 km 해상도 QuikSCAT 해상풍 검증 (Validation of QuikSCAT Wind with Resolution of 12.5 km in the Vicinity of Korean Peninsula)

  • 정진용;심재설;이동규;민인기;권재일
    • Ocean and Polar Research
    • /
    • 제30권1호
    • /
    • pp.47-58
    • /
    • 2008
  • Several validation studies have been made for QuikSCAT(QSCAT) wind data around the world, mainly in the offshore. However, until now, there were no validation studies for QSCAT wind with resolution of 12.5 km ('QSCAT 12.5 km wind') in the vicinity of Korean Peninsula. To validate 'QSCAT 12.5 km wind' and to investigate its characteristics around Korean Peninsula, the wind data from Ieodo Ocean Research Station, KMA buoys, and KORDI Realtime Observation Stations have been compared. Validation results showed that 'QSCAT 12.5 km wind' RMSE of wind direction and speed were $25.85^{\circ}$ and 1.83 m/s, respectively, at Ieodo Station. The mean wind speed correlation coefficient of KMA buoys and KORDI Realtime Observation Station were 0.78 and 0.61, and the mean wind speed RMSE were 2.2 m/s and 3.2 m/s, respectively. This seems to be mainly because of the distance between QSCAT and in-situ observation stations. The RMSE of wind direction were bigger than $40^{\circ}$ at all in-situ observation stations located near the shore, within 20 km from coastlines. Geophysical features where in-situ observation stations are located seem to affect wind validation scores.

SiC 휘스커 보강 알루미나 복합재료에서 Slow Crack Growth 현상의 직접관찰 연구 (In Situ Observation of Slow Crack Growth in a Whisker-Reinforced Alumina Matrix Composite)

  • 손기선;김우상;이성학
    • 한국세라믹학회지
    • /
    • 제33권2호
    • /
    • pp.203-213
    • /
    • 1996
  • In this study the subcritical crack growth behavior in an Al2O3-SiCw composite has been investigated using in situ fracture technique of applied moment double cantilever beam (AMDCB) specimens indside an SEM. This technique allows the detailed observation of whisker and grain bridging in the crack wake region. The experimental results indicated that the KI-a curve was deviated from the conventional powder law form and that the existed a region where the rate of microcrack growth was decreased with increasing the externally applied stress intensity factor. This behavior could be explained by arising crack growth resistance i.e. R-curve behavior which was associated with crack shielding due to whisker and grain bridging. The R-curve was also analyzed from the KI-a curve data in order to quantify the bridging effect in the Al2O3-SiCw composite.

  • PDF

Al 박막의 힐록 형성에 미치는 Mo 하부층의 영향에 관한 실시간 분석 (In-situ Analysis on the Effect of Mo Underlayer on Hillock Formation Behavior in Al Thin Films)

  • 이용덕;황수정;이제훈;주영창;박영배
    • 한국재료학회지
    • /
    • 제17권1호
    • /
    • pp.25-30
    • /
    • 2007
  • The in-situ scanning electron microscopy observation of real-time hillock evolution in pure hi thin films on glass substrate during Isothermal annealing was analyzed quantitatively to understand the compressive stress relaxation mechanism by focusing on the effect of Mo interlayer between Al film and glass substrate. There is a good correlation between the hillock-induced stress relaxation by in-situ scanning electron microscopy observation ana the measured stress relaxation by wafer curvature method. It is also clearly shown that the existence of Mo interlayer plays an important role in hillock formation probably due to the large difference in interfacial diffusivity of Al films.

In-Situ SEM Observation and DIC Strain Analysis for Deformation and Cracking of Hot-Dip ZnMgAl Alloy Coating

  • Naoki Takata;Hiroki Yokoi;Dasom Kim;Asuka Suzuki;Makoto Kobashi
    • Corrosion Science and Technology
    • /
    • 제23권2호
    • /
    • pp.113-120
    • /
    • 2024
  • An attempt was made to apply digital image correlation (DIC) strain analysis to in-situ scanning electron microscopy (SEM) observations of bending deformation to quantify local strain distribution inside a ZnMgAl-alloy coating in deformation. Interstitial-free steel sheets were hot-dipped in a Zn-3Mg-6Al (mass%) alloy melt at 400 ℃ for 2 s. The specimens were deformed using a miniature-sized 4-point bending test machine inside the SEM chamber. The observed in situ SEM images were used for DIC strain analysis. The hot-dip ZnMgAl-alloy coating exhibited a solidification microstructure composed of a three-phase eutectic of fine Al (fcc), Zn (hcp), and Zn2Mg phases surrounding the primary solidified Al phases. The relatively coarsened Zn2Mg phases were locally observed inside the ZnMgAl-alloy coating. The DIC strain analysis revealed that the strain was localized in the primary solidified Al phases and fine eutectic microstructure around the Zn2Mg phase. The results indicated high deformability of the multi-phase microstructure of the ZnMgAl-alloy coating.

합금화용융아연도금강판의 미세파괴거동에 대한 In-situ 관찰 (In-situ Observation on the Microfracture Behavior of Gavannealed Steel Sheet)

  • 문현수;부현덕;추용호;안병국;김영근;안행근
    • 한국재료학회지
    • /
    • 제14권9호
    • /
    • pp.676-681
    • /
    • 2004
  • In-situ observation in SBM on the microfracture behavior of coating layer was performed for GA steel sheets that have various Fe contents and thickness of coating layer. In case of cross sectional side of coating layer that was in a tensile stress state during bending, fine perpendicular crack pre-induced during galvannealing grew and propagated rapidly toward the coating surface with the increase of strain. And then it grew and propagated along the ${\Gamma}/Fe$ matrix interface, and combined with the nearest another perpendicular crack. Consequently, flaking occurred. The more Fe content and thickness of coating layer increased, the more average crack interval and flaking resistivity increased. Exfoliation was little observed at coating surface in a tensile stress state.

Nano-Scale Observation of Nanomaterials by In-Situ TEM and Ultrathin SiN Membrane Platform

  • 안치원
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2013년도 제44회 동계 정기학술대회 초록집
    • /
    • pp.657-657
    • /
    • 2013
  • In-situ observations of nano-scale behavior of nanomaterials are very important to understand onthe nano-scale phenomena associated with phase change, atomic movement, electrical or optical properties, and even reactions which take place in gas or liquid phases. We have developed on the in-situ experimental technologies of nano-materials (nano-cluster, nanowire, carbon nanotube, and graphene, et al.) and their interactions (percolation of metal nanoclusters, inter-diffusion, metal contacts and phase changes in nanowire devices, formation of solid nano-pores, melting behavior of isolated nano-metal in a nano-cup, et al.) by nano-discovery membrane platform [1-4]. Between two microelectrodes on a silicon nitride membrane platform, electrical percolations of metal nano-clusters are observed with nano-structures of deposited clusters. Their in-situ monitoring can make percolation devices of different conductance, nanoclusters based memory devices, and surface plasmonic enhancement devices, et al. As basic evidence on the phase change memory, phase change behaviors of nanowire devices are observed at a nano-scale.

  • PDF

A new culture system for in situ observation of the growth and development of Eucyclops serrulatus (Copepoda: Cyclopoida)

  • PARK Sung-Hee;CHANG Cheon-Young;SHIN Sung-Shik
    • Parasites, Hosts and Diseases
    • /
    • 제43권4호
    • /
    • pp.141-147
    • /
    • 2005
  • A practical and convenient method of rearing Eucyclops serrulatus in a microculture environment is described. A complete life cycle of E. serrulatus was maintained in a narrow space on a microscope slide glass on which a cover glass of $22{\times}40mm$ in size was mounted at a height of 0.8mm. The culture medium was constituted by bottled mineral water boiled with grains of Glycine max (soybean). Chilomonas paramecium, a free-living protozoan organism, was provided as live food. Growth of nauplii hatched from eggs to the first stage of copepodite took an average of 7.7 days, and the growth of copepodite 1 to the egg-bearing adult female took an average of 20.1 days in the microculture cell with an average life time of 44.7 days. Continuous passage of cope pods was successfully maintained as long as sufficient medium and food were provided. The microculture method enables an in situ microscopic observation on the growth and developmental process of helminth larvae experimentally infected to copepods as well as of copepod itself. Furthermore, it does not require anesthetization and, therefore, minimize the amount of stress exposed to cope pods during the handling process.

기상청 천리안 위성 자료를 활용한 태양광 기상자원 특성 및 오차 분석 (Characteristics and Error Analysis of Solar Resources Derived from COMS Satellite)

  • 이수향;김연희
    • 대기
    • /
    • 제30권1호
    • /
    • pp.59-73
    • /
    • 2020
  • The characteristics of solar resources in South Korea were analyzed by comparing the solar irradiance derived from COMS (Communication, Ocean and Meteorological Satellite) with in-situ ground observation data (Pyranometer). Satellite-derived solar irradiance and in-situ observation showed general coincidence with correlation coefficient higher than 0.9, but the satellite observations tended to overestimate the radiation amount compared to the ground observations. Analysis of hourly and monthly irradiance showed that relatively large discrepancies between the satellite and ground observations exist after sunrise and during July~August period which were mainly attributed to uncertainties in the satellite retrieval such as large atmospheric optical thickness and cloud amount. But differences between the two observations did not show distinct diurnal or seasonal cycles. Analysis of regional characteristics of solar irradiance showed that differences between satellite and in-situ observations are relatively large in metrocity such as Seoul and coastal regions due to air pollution and sea salt aerosols which act to increase the uncertainty in the satellite retrieval. It was concluded that the satellite irradiance data can be used for assessment and prediction of solar energy resources overcoming the limitation of ground observations, although it still has various sources of uncertainty.

TEM sample preparation using micro-manipulator for in-situ MEMS experiment

  • Hyunjong Lee;Odongo Francis Ngome Okello;Gi-Yeop Kim;Kyung Song;Si-Young Choi
    • Applied Microscopy
    • /
    • 제51권
    • /
    • pp.8.1-8.7
    • /
    • 2021
  • Growing demands for comprehending complicated nano-scale phenomena in atomic resolution has attracted in-situ transmission electron microscopy (TEM) techniques for understanding their dynamics. However, simple to safe TEM sample preparation for in-situ observation has been limited. Here, we suggested the optical microscopy based micro-manipulating system for transferring TEM samples. By adopting our manipulator system, several types of samples from nano-wires to plate-like thin samples were transferred on micro-electro mechanical systems (MEMS) chip in a single step. Furthermore, the control of electrostatic force between the sample and the probe tip is found to be a key role in transferring process.