• Title/Summary/Keyword: in-situ mechanical testing

Search Result 40, Processing Time 0.032 seconds

A Pilot Study of Implementing Bender Element to In-situ Civil Engineering Measurement (현장 토목 계측을 위한 벤더 엘리멘트의 적용성 연구)

  • Jung Jae-Woo;Jang In-Sung;Mok Young-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.215-223
    • /
    • 2005
  • Piezo-ceramics are special materials which transform energy from mechanical to electrical forms and vice versa. Bender elements are composite materials consisting of thin piezo-ceramics and elastic shims, and are widely used as actuators and transducers in the field of electronics, robotics, autos and mechatronics utilizing the effectiveness of energy transformation capability. In geotechnical engineering, commercial bender elements are used in laboratory as source and receiver in the measurements of soil stiffness. The elements were built by using various metal shims sandwiched between piezo-ceramics and coating over the composite in the research. A pair of elements were buried in a concrete block and used as source and receiver to measure the stiffness of the concrete. The test results were verified by comparing with the resonant column testing results. In a preliminary stage of the development of an in-situ seismic testing equipment using bender elements for soft clay materials, shear waves were generated and measured by burying the elements in the barrel of kaolinite and water mixture. The measured shear wave signals were so distinct for the first-arrival pick that applicability of the elements in the field measurements could be very promising.

Condition Monitoring under In-situ Lubrication Status of Bearing Using Infrared Thermography (적외선열화상을 이용한 베어링의 실시간 윤활상태에 따른 상태감시에 관한 연구)

  • Kim, Dong-Yeon;Hong, Dong-Pyo;Yu, Chung-Hwan;Kim, Won-Tae
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.121-125
    • /
    • 2010
  • The infrared thermography technology rather than traditional nondestructive methods has benefits with non-contact and non-destructive testings in measuring for the fault diagnosis of the rotating machine. In this work, condition monitoring measurements using this advantage of thermography were proposed. From this study, the novel approach for the damage detection of a rotating machine was conducted based on the spectrum analysis. As results, by adopting the ball bearing used in the rotating machine applied extensively, an spectrum analysis with thermal imaging experiment was performed. Also, as analysing the temperature characteristics obtained from the infrared thermography for in-situ rotating ball bearing under the lubrication condition, it was concluded that infrared thermography for condition monitoring in the rotating machine at real time could be utilized in many industrial fields.

Destructive testing of adhesively bonded joints under static tensile loading

  • Ochsner, A.;Gegner, J.
    • Journal of Adhesion and Interface
    • /
    • v.5 no.2
    • /
    • pp.22-36
    • /
    • 2004
  • Several in-situ testing methods of adhesively bonded joints under static short-time tensile loading are critically analyzed in terms of experimental procedure and data evaluation. Due to its rather homogeneous stress state across the glue line, the tensile-shear test with thick single-lap specimens, according to ISO 11003-2, has become the most important test process for the determination of realistic materials parameters. This basic method, which was improved in both, the experimental part by stepped adherends and easily attachable extensometers and the evaluation procedure by numeric substrate deformation correction and test simulation based on the finite element method (FEM), is therefore demonstrated by application to several kinds of adhesives and metallic adherends. Multi-axial load decreases the strength of a joint. This effect, which is illustrated by an experimental comparison, impedes the derivation of realistic mechanical characteristics from measured force-displacement curves. It is shown by numeric modeling that tensile-shear tests with thin plate substrates according to ISO 4587, which are widely used for quick industrial quality assurance, reveal an inhomogeneous stress state, especially because of relatively large adherend deformation. Complete experimental determination of the elastic properties of bonded joints requires independent measurement of at least two characteristics. As the thick-adherend tensile-shear test directly yields the shear modulus, the tensile butt-joint test according to ISO 6922 represents the most obvious complement of the test programme. Thus, validity of analytical correction formulae proposed in literature for the derivation of realistic materials characteristics is verified by numeric simulation. Moreover, the influence of the substrate deformation is examined and a FEM correction method introduced.

  • PDF

A Pilot Study of Bender Elements in Stiffness Measurements of Civil Engineering Materials (벤더 엘리멘트를 이용한 토목재료의 강성측정에 대한 적용성 연구)

  • Mok, Young-Jin;Jung, Jae-Woo;Jang, In-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.308-319
    • /
    • 2005
  • Piezo-ceramics are special materials which transform energy between mechanical and electrical forms. Bender-elements are composite materials consisting of thin piezo-ceramics and elastic shims, and are widely used as actuators and transducers in the field of electronics, robotics, autos and mechatronics utilizing the effectiveness of energy transformation capability. In geotechnical engineering, commercial bender-elements are used in laboratory as source and receiver in the measurements of soil stiffness. The elements were built by using various metal shims sandwiched between piezo-ceramics and coating over the composite in the research. A pair of elements were buried in a concrete block and used as source and receiver to measure the stiffness of the concrete. The test results were verified by comparing with the resonant column testing results. In a preliminary stage of the development of an in-situ seismic testing equipment using bender-elements for soft clay materials, shear waves were generated and measured by burying the elements in the barrel of kaolinite and water mixture. The measured shear wave signals were so distinct for the first-arrival pick that applicability of the elements in the field measurements is very promising.

  • PDF

Study on Compressive Strength of Field-Cast Concrete (현장타설 콘크리트의 압축강도에 관한 연구)

  • 김상효;배규웅
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.69-72
    • /
    • 1989
  • It is widely recognized that the strength of reinforced concrete members has characteristics of random variations due to the variability of the mechanical properties of concrete and steel, the dimensional error as well as incorrect placement of reinforcing bars. In those sources of randomness, variations in concrete strength may be the one affecting the strength of R.C. members most. The concrete strength is usually assumed to have large uncertainty due to the variations in many factors, such as material properties, proportions of the concrete mix, methods of mixing, transporting, placing and curing, etc. In this study, the random characteristics inherent in the strength of field-cast concrete have been examined based on the data collected by testing standard cylinders made of field-cast concrete and cured under in-situ condition.

  • PDF

A Study on Characteristics of Jointed Rock Masses and Thermo-hydro-mechanical Behavior of Rock Mass under High Temperature (방사성 폐기물 저장을 위한 불연속 암반의 특성 및 고온하에서의 암반의 수리열역학적 상호작용에 관한 연구)

  • 이희근;김영근;이희석
    • Tunnel and Underground Space
    • /
    • v.8 no.3
    • /
    • pp.184-193
    • /
    • 1998
  • In order to dispose radioactive wastes safely, it is needed to understand the mechanical, thermal, fluid behavior of rockmass and physico-chemical interactions between rockmass and water. Also, the knowledge about mechanical and hydraulic properties of rocks is required to predict and to model many conditions of geological structure, underground in-situ stress, folding, hot water interaction, intrusion of magma, plate tectonics etc. This study is based on researches about rock mechanics issues associated with a waste disposal in deep rockmass. This paper includes the mechanical and hydraulic behavior of rocks in varying temperature conditions, thermo-hydro-mechanical coupling analysis in rock mass and deformation behavior of discontinuous rocks. The mechanical properties were measured with Interaken rock mechanics testing systems and hydraulic properties were measured with transient pulse permeability measuring systems. In all results, rock properties were sensitive to temperature variation.

  • PDF

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

Rock Mechanics-Major Projects and Research Topics in Korea (암반공학-우리나라에서의 과제와 연구주제)

  • Chung, So-Keul
    • Economic and Environmental Geology
    • /
    • v.39 no.4 s.179
    • /
    • pp.451-471
    • /
    • 2006
  • Major projects and research topics in the field of rock mechanics are analyzed to obtain the following results: $\cdot$ Rock mechanics deals with the behavior of deformation, failure and displacement of the rock and rock mass on the basis of geological basics. Discontinuities in the rock mass are the most important parameters to control the behavior of rock mass around underground openings. $\cdot$ The objective of site investigation and testing is to determine the strength properties of the rock mass and the in situ stress regime. Specimens for laboratory and in situ tests are to be selected in order that the results of the tests give the representative properties oi the rock mass of the site in question. $\cdot$ The result of a numerical model would be better evaluated not quantitatively but qualitatively. The displacement behavior of the rock mass has to be monitored properly for the NATM (New Austrian Tunneling Method) principles. $\cdot$ The stability of rock slope is to be evaluated preferably by back analysis with strength parameters, such as cohesion and friction angle.

A Technical Review of Hydromechanical Properties of Jointed Rock Mass accompanied by Fluid Injection (유체 주입을 동반한 절리 암반의 수리-역학 특성 평가에 대한 고찰)

  • Kim, Hyung-Mok;Guglielmi, Yves;Rutqvist, Jonny;Park, Eui-Seob
    • Tunnel and Underground Space
    • /
    • v.29 no.1
    • /
    • pp.12-29
    • /
    • 2019
  • Permeability and its change due to a fluid injection in jointed rock mass is an important factor to be well identified for a safe and successful implementation of Carbon Capture and Sequestration (CCS), Enhanced Geothermal System (EGS) and Enhanced Oil Recovery (EOR) projects which may accompany injection-induced hydromechanical deformation of the rock mass. In this technical report, we first reviewed important issues in evaluating initial permeability using borehole hydraulic tests and numierical approaches for understanding coupled hydromechanical properties of rock mass. Recent SIMFIP testing device to measure these hydromechanical properties directly through in-situ borehole experiments was also reviewed. The technical significance and usefulness of the device for further applications was discussed as well.

An Empirical Estimation Procedure of Concrete Compressive Strength Based on the In-Situ Nondestructive Tests Result of the Existing Bridges (공용중 교량 비파괴시험 결과에 기반한 경험적 콘크리트 압축강도 추정방법의 제안)

  • Oh, Hong-Seob;Oh, Kwang-Chin
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.20 no.4
    • /
    • pp.111-119
    • /
    • 2016
  • Rebound hammer test, SonReb method and concrete core test are most useful testing methods for estimate the concrete compressive strength of deteriorated concrete structures. But the accuracy of the NDE results on the existing structures could be reduced by the effects of the uncertainty of nondestructive test methods, material effects by aging and carbonation, and mechanical damage by drilling of core. In this study, empirical procedure for verifying the in-situ compressive strength of concrete is suggested through the probabilistic analysis on the 268 data of rebound and ultra-pulse velocity and core strengths obtained from 106 bridges. To enhance the accuracy of predicted concrete strength, the coefficients of core strength, and surface hardness caused by ageing or carbonation was adopted. From the results, the proposed equation by KISTEC and the estimation procedures proposed by authors is reliable than previously suggested equation and correction coefficient.