Kim, In-Woo;Lee, Joon Ha;Seo, Minchul;Lee, Hwa Jeong;Baek, Minhee;Kim, Mi-Ae;Shin, Yong Pyo;Kim, Sung Hyun;Kim, Iksoo;Hwang, Jae Sam
Journal of Microbiology and Biotechnology
/
v.30
no.9
/
pp.1282-1289
/
2020
Previously, we performed an in silico analysis of the Periplaneta americana transcriptome. Antimicrobial peptide candidates were selected using an in silico antimicrobial peptide prediction method. It was found that periplanetasin-5 had antimicrobial activity against yeast and gram-positive and gram-negative bacteria. In the present study, we demonstrated the anti-inflammatory activities of periplanetasin-5 in mouse macrophage Raw264.7 cells. No cytotoxicity was observed at 60 ㎍/ml periplanetasin-5, and treatment decreased nitric oxide production in Raw264.7 cells exposed to lipopolysaccharide (LPS). In addition, quantitative RT-PCR and enzyme-linked immunosorbent assay revealed that periplanetasin-5 reduced cytokine (tumor necrosis factor-α, interleukin-6) expression levels in the Raw264.7 cells. Periplanetasin-5 controlled inflammation by inhibiting phosphorylation of MAPKs, an inflammatory signaling element, and reducing the degradation of IκB. Through LAL assay, LPS toxicity was found to decrease in a periplanetasin-5 dose-dependent manner. Collectively, these data showed that periplanetasin-5 had anti-inflammatory activities, exemplified in LPS-exposed Raw264.7 cells. Thus, we have provided a potentially useful antibacterial peptide candidate with anti-inflammatory activities.
Objective: The aim of this study was to discover the functional impact of non-synonymous single nucleotide polymorphisms (nsSNPs) that were found in selective sweep regions of the Landrace genome Methods: Whole-genome re-sequencing data were obtained from 40 pigs, including 14 Landrace, 16 Yorkshire, and 10 wild boars, which were generated with the Illumina HiSeq 2000 platform. The nsSNPs in the selective sweep regions of the Landrace genome were identified, and the impacts of these variations on protein function were predicted to reveal their potential association with traits of the Landrace breed, such as reproductive capacity. Results: Total of 53,998 nsSNPs in the mapped regions of pigs were identified, and among them, 345 nsSNPs were found in the selective sweep regions of the Landrace genome which were reported previously. The genes featuring these nsSNPs fell into various functional categories, such as reproductive capacity or growth and development during the perinatal period. The impacts of amino acid sequence changes by nsSNPs on protein function were predicted using two in silico SNP prediction algorithms, i.e., sorting intolerant from tolerant and polymorphism phenotyping v2, to reveal their potential roles in biological processes that might be associated with the reproductive capacity of the Landrace breed. Conclusion: The findings elucidated the domestication history of the Landrace breed and illustrated how Landrace domestication led to patterns of genetic variation related to superior reproductive capacity. Our novel findings will help understand the process of Landrace domestication at the genome level and provide SNPs that are informative for breeding.
Human coronavirus diseases, particularly severe acute respiratory syndrome coronavirus 2, still remain a persistent public health issue, and many recent studies are focusing on the quest for new leads against coronaviruses. To contribute to this growing pool of knowledge and explore the available marine natural products against coronaviruses, this study investigated the antiviral effects of fucoxanthin isolated from Sargassum siliquastrum-a brown alga found on Jeju Island, South Korea. The antiviral effects of fucoxanthin were confirmed in severe acute respiratory syndrome coronavirus 2-infected Vero cells, and its structural characteristics were verified in silico using molecular docking and molecular dynamic simulations and in vitro colorimetric method. Fucoxanthin inhibited the infection in a concentration-dependent manner, without showing cytotoxicity. Molecular docking simulations revealed that fucoxanthin binds to the angiotensinconverting enzyme 2-spike protein (binding energy -318.306 kcal mol-1) and main protease (binding energy -205.118 kcal mol-1). Moreover, molecular dynamic simulations showed that fucoxanthin remains docked to angiotensin-converting enzyme 2-spike protein for 20 ns, whereas it breaks away from main protease after 3 ns. Also, the in silico prediction of the fucoxanthin was verified through the in vitro colorimetric method by inhibiting the binding between angiotensinconverting enzyme 2 and spike protein in a concentration-dependent manner. These results indicate that fucoxanthin exhibits antiviral effects against severe acute respiratory syndrome coronavirus 2 by blocking the entry of the virus. Therefore, fucoxanthin from S. siliquastrum can be a potential candidate for treating coronavirus infection.
Maisha Tasneem;Shipan Das Gupta;Monira Binte Momin;Kazi Modasser Hossain;Tasnim Binta Osman;Fazley Rabbi
Genomics & Informatics
/
v.21
no.1
/
pp.7.1-7.11
/
2023
The gram-positive bacterium Listeria monocytogenes is an important foodborne intracellular pathogen that is widespread in the environment. The functions of hypothetical proteins (HP) from various pathogenic bacteria have been successfully annotated using a variety of bioinformatics strategies. In this study, a HP Imo0888 (NP_464414.1) from the Listeria monocytogenes EGD-e strain was annotated using several bioinformatics tools. Various techniques, including CELLO, PSORTb, and SOSUIGramN, identified the candidate protein as cytoplasmic. Domain and motif analysis revealed that the target protein is a PemK/MazF-like toxin protein of the type II toxin-antitoxin system (TAS) which was consistent with BLASTp analysis. Through secondary structure analysis, we found the random coil to be the most frequent. The Alpha Fold 2 Protein Structure Prediction Database was used to determine the three-dimensional (3D) structure of the HP using the template structure of a type II TAS PemK/MazF family toxin protein (DB ID_AFDB: A0A4B9HQB9) with 99.1% sequence identity. Various quality evaluation tools, such as PROCHECK, ERRAT, Verify 3D, and QMEAN were used to validate the 3D structure. Following the YASARA energy minimization method, the target protein's 3D structure became more stable. The active site of the developed 3D structure was determined by the CASTp server. Most pathogens that harbor TAS create a crucial risk to human health. Our aim to annotate the HP Imo088 found in Listeria could offer a chance to understand bacterial pathogenicity and identify a number of potential targets for drug development.
6-Phosphogluconolactonase (6PGL) is one of the key enzymes in the ubiquitous pathways of central carbon metabolism, but bacterial 6PGL had been long known as a missing enzyme even after complete bacterial genome sequence information became available. Although recent experimental characterization suggests that there are two types of 6PGLs (DevB and YbhE), their phylogenetic distribution is severely biased. Here we present that proteins in COG group previously described as 3-oarboxymuconate cyclase (COG2706) are actually the YbhE-type 6PGLs, which are widely distributed in Proteobacteria and Fimicutes. This case exemplifies how erroneous functional description of a member in the reference database commonly used in transitive genome annotation cause systematic problem in the prediction of genes even with universal cellular functions.
P-gp (P-glycoprotein) is a member of the ATP binding cassette (ABC) family of transporters. It transports many kinds of anticancer drugs out of the cell. It plays a major role as a cause of multidrug resistance (MDR). MDR function may be a cause of the failure of chemotherapy in cancer and influence pharmacokinetic properties of many drugs. Hence classification of candidate drugs as substrates or nonsubstrate of the P-gp is important in drug development. Therefore to identify whether a compound is a P-gp substrate or not, in silico method is promising. Recursive Partitioning (RP) method was explored for prediction of P-gp substrate. A set of 261 compounds, including 146 substrates and 115 nonsubstrates of P-gp, was used to training and validation. Using molecular descriptors that we can interpret their own meaning, we have established two models for prediction of P-gp substrates. In the first model, we chose only 6 descriptors which have simple physical meaning. In the training set, the overall predictability of our model is 78.95%. In case of test set, overall predictability is 69.23%. Second model with 2D and 3D descriptors shows a little better predictability (overall predictability of training set is 79.29%, test set is 79.37%), the second model with 2D and 3D descriptors shows better discriminating power than first model with only 2D descriptors. This approach will be used to reduce the number of compounds required to be run in the P-gp efflux assay.
In conclusion, the seemingly fuzzy and disorganized data of biology with thousands of different layers ranging from molecule to the Internet have refused so far to be mapped precisely and predicted successfully by mathematicians, physicists or computer scientists. Genomics and bioinformatics are the fields that process such complex data. The insights on the nature of biological entities as complex interaction networks are opening a door toward a generalization of the representation of biological entities. The main challenge of genomics and bioinformatics now lies in 1) how to data mine the networks of the domains of bioinformatics, namely, the literature, metabolic pathways, and proteome and structures, in terms of interaction; and 2) how to generalize the networks in order to integrate the information into computable genomic data for computers regardless of the levels of layer. Once bioinformatists succeed to find a general principle on the way components interact each other to form any organic interaction network at genomic scale, true simulation and prediction of life in silico will be possible.
Structure-based drug design possibly benefit from in silico methods that precisely predict the binding affinity of small molecules to target macromolecules. There are many limitations arise from the difficulty of predicting the binding affinity of a small molecule to a biological target with the current scoring functions. There is thus a strong interest in novel methodologies based on MD simulations that claim predictions of greater accuracy than current scoring functions, helpful for a regular use designed for drug discovery in the pharmaceutical industry. Herein, we report a short review on free energy calculations using MMPBSA method a useful method in structure based drug discovery.
Using computational approaches we can dock small molecules into the structures of Macromolecular targets and then score their potential complementarity to binding sites is widely used in hit identification and lead optimization techniques. This review seeks to provide the application of docking in structure-based drug design (binding mode prediction, Lead Identification and Lead optimization), and also discussed how to manage errors in docking methodology in order to overcome certain limitations of docking and scoring algorithm.
Five fusion proteins between Z domains derived from Staphylococcal Protein A and Green Fluorescent Protein or Human Proinsulin were produced on the periplasm of Escherichia coli. The effects of the molecular weight and amino acid composition of the translocated peptide, culture medium composition, and growth phase of the bacterial culture were analyzed regarding the expression and periplasmic secretion of the recombinant proteins. It was found that secretion was not affected by the size of the translocated peptide (17-42 kDa) and that the highest periplasmic production values were obtained on the exponential phase of growth. Moreover, the highest periplasmic values were obtained in minimal medium, showing the relevance of the culture medium composition on secretion. In silico prediction analysis suggested that with respect to the five proteins used in this study, those that are prone to form ${\alpha}$-helix structures are more translocated to the periplasm.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.