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P-gp (P-glycoprotein) is a member of the ATP binding cassette (ABC) family of transporters. It transports

many kinds of anticancer drugs out of the cell. It plays a major role as a cause of multidrug resistance (MDR).

MDR function may be a cause of the failure of chemotherapy in cancer and influence pharmacokinetic

properties of many drugs. Hence classification of candidate drugs as substrates or nonsubstrate of the P-gp is

important in drug development. Therefore to identify whether a compound is a P-gp substrate or not, in silico

method is promising. Recursive Partitioning (RP) method was explored for prediction of P-gp substrate. A set

of 261 compounds, including 146 substrates and 115 nonsubstrates of P-gp, was used to training and validation.

Using molecular descriptors that we can interpret their own meaning, we have established two models for

prediction of P-gp substrates. In the first model, we chose only 6 descriptors which have simple physical

meaning. In the training set, the overall predictability of our model is 78.95%. In case of test set, overall

predictability is 69.23%. Second model with 2D and 3D descriptors shows a little better predictability (overall

predictability of training set is 79.29%, test set is 79.37%), the second model with 2D and 3D descriptors shows

better discriminating power than first model with only 2D descriptors. This approach will be used to reduce the

number of compounds required to be run in the P-gp efflux assay.
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Introduction

Absorption, distribution, metabolism, excretion, and toxi-

city (ADMET) properties are very important in the drug

discovery.1,2 Unfavorable ADMET of new drug candidates

cause over 40% of drug failures in drug development.3

Bioavailability of drugs as well as possibility of drug-drug

interaction is strongly influenced by interaction of drugs

with ABC-transporters, because the ABC-multidrug trans-

porters are constitutively expressed in many organs, such as

hepatocytes, the intestine and the kidney.4 Inhibition of

the thoroughly studied transporters, ABCB1, ABCC1 and

ABCG2, has been advocated as a mechanism for the re-

storation of drug sensitivity.5 And it is known that cholestatic

forms drug-induced liver damage result from a drug- and

metabolite-mediated inhibition of hepatobiliary transporter

systems, such asABCB1, ABCB4, ABCG2, ABCG5 and

ABCG8.6 Therefore, interaction with ABC transporters has

the critical roles in determination of the clinical usefulness,

side effects and toxicity risks of drugs. P-glycoprotein (P-gp)

is a member of the ATP-binding cassette (ABC) family of

transporters and known as ABCB1 in ABCB subfamily.7 P-

gp is the product of the multi drug resistance (MDR) gene

and an ATP dependent efflux transporter that affects the

absorption, distribution and excretion of clinically important

drugs.8 Over-expression of this protein, which may result in

MDR is a major cause of the failure of cancer chemotherapy,

and decrease efficacy of antibiotics.9,10 The prediction of P-

gp substrates, which facilitates early identification and

elimination of drug candidates of low efficacy or high

potential of MDR.11-17 However, the accurate prediction of

P-gp remains a challenge due to the complexity of the

understanding physiological mechanisms and the lack of

high quality data. For increasing the predictability, many

complex statistical machine learning methods were carried

out using supervised methods such as artificial neural network

(ANN), Bayesian network and support vector machine

(SVM). However, many molecular descriptors in P-gp

models did not provide a better interpretable understanding
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of P-gp substrates. Previously, we developed the machine

learning method of genetic algorithm-grid search-SVM (GA-

GS-SVM) for developing model of hERG toxicity predic-

tion.18 The selected descriptors could not easily interpretable

for understating of binding between hERG ion channel and

inhibitors.

In this study, Recursive partitioning (RP) method used in

this work, we published that RP was widely known to be fast

compared to other methods and provides easily interpre-

table results.19 It is a simple statistical method but, we can

understand the physical meaning of descriptors and provide

interpretable information of P-gp to a medicinal chemist. For

developing model of P-gp substrates, the well-known

2-dimensional (2D) descriptors were used for classification

model of P-gp substrate. For increasing the accuracy, we

additionally developed 3-dimensional (3D) descriptors for

developing the classification model of P-gp substrates. 

Methods

Data Sets. A total of 261 compounds which were classi-

fied as P-gp substrates or nonsubstrates used in this work

were cautiously assembled from literature.10,15,16,20 After

removing 12 compounds of overlap data, we constructed SD

file format of 261 compounds using PreADMET S/W.21 The

data set consists of 146 substrates and 115 nonsubstrates. In

the 2D RP model, data set was randomly divided into two

parts in Table 1. One is a training set with 209 compounds,

containing 120 substrates and 89 nonsubstrates, and the

other is a test set with 52 compounds, containing 26 sub-

strates and 26 nonsubstrates. In case of 3D RP model, data

set was randomly divided into two parts, a training set

contained 198 compounds and a test set contained 63

compounds in Table 2.

Molecular Descriptors. We used 2D and 3D descriptors.

First, we selected six descriptors which can explain their

physical meaning. These descriptors are No_H_donors,

No_H_acceptors, Topological_PSA, SKlogP_value, 2D_

VDW_Surface, Molecular weight. We calculated value of

descriptors using PreADMET. There is high coefficient of

correlation (> 0.9) between molecular weight and surface

area. And there is also high coefficient of correlation

(> 0.85) between sum of HBD, HBA and polar surface area.

Commonly, descriptors show high correlations are discarded

because they may not have significant statistical meaning.

But, we thought they have physically important meaning to

describe feature of substrates or non-substrates compounds.

In order to increase the predictability, 3D descriptors,

polar surface area and logP, were employed to build the RP

model. The additional 3D descriptors are polar surface area

based on Connolly surface and logP based on Solvation Free

Energy Density model. To calculate values of the 3D

descriptors reliably, all the substrate and non-substrate were

optimized by MMFF force field.

The polar surface area (C_PSA) was calculated based on

the method to generate three dimensional molecular surfaces,

Connolly surface.22 This method, which was implemented in

in-house descriptor program, calculates exposed atomic

surface area of each atoms in a given molecule. The total

PSA is the sum of the exposed atomic surface area of polar

atoms, which are nitrogen, oxygen, phosphate and sulfur

atoms. The surface areas of our in-house program were cal-

culated about 10 test molecules to be compared with surface

areas from the available commercial software, Discovery

Studio®.23

The LogP descriptor was implemented based on the

Solvation Free Energy Density (SFED) Model, which cal-

culated various solvation energy values including solvation

energy in the pure water, octanol solvation energy, and

partition coefficient.24 In order to calculate logP values using

SFED model, the grid points, of which distribution depends

on the conformation of a molecule, are generated surround a

molecule. Therefore the logP descriptor based on the SFED

model reflects the three dimensional information of a given

Table 1. Performance parameters - accuracy, sensitivity, specificity, kappa, Matthews correlation coefficient- for RP model (2D)
corresponding to P-gp training and test sets

Data set Accuracy, % Sensitivity, % Specificity, % Kappaa Matthews correlation coefficient (MCC)b

Training
78.95

(165/209)

75.83

(91/120)

83.15

(74/89)
0.58 0.58

Test
69.23

(36/52)

65.38

(17/26)

73.08

(19/26)
0.38 0.39

aKappa = E = . bMCC = 

Table 2. Performance parameters - accuracy, sensitivity, specificity, kappa, Matthews correlation coefficient- for RP model (3D)
corresponding to P-gp training and test sets

Data set Accuracy, % Sensitivity, % Specificity, % Kappa Matthews correlation coefficient (MCC)

Training
79.29

(157/198)

83.78

(93/114)

73.56

(64/82)
0.58 0.58

Test
79.37

(50/63)

79.31

(23/29)

79.41

(27/34)
0.59 0.59

Accuracy E–

1 E–
--------------------------------, 

TP FN+( ) TN FP+( ) FP TP+( ) FN TP+( )+

TP FP FN TN+ + +( )
------------------------------------------------------------------------------------------------------

TP TN×( ) FP FN×( )–

TP FN+( ) TN FP+( ) FP TP+( ) FN TP+( )
------------------------------------------------------------------------------------------------------
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molecule. In the previous work, the logP values were used to

predict experimental logP values of peptide structures and

involved in structure optimization of peptides.25,26 This work

confirmed that the logP model of SFED could describe

relative stability of different conformers of an amino acid in

the aqueous systems. From this result, availability of the

logP model in SFED to explain the three dimensional state

of molecules were validated and the rationale of usefulness

of logP as the 3D descriptor was confirmed.

Computational Procedure. The computational procedure

in this work is outlined as the following: The RP classi-

fication system for this study was trained by the Gini

Impurity scoring function. The value of 1/100 of samples

was considered as the minimum number of samples in any

node. The maximum tree depth was 5 and the default values

were accepted for the maximum number of generic splits

and the number of knots per variable. The predictability of

RP system during the training process was evaluated by

means of 5-fold cross-validation. The RP training was per-

formed using Pipeline Pilot.27

Resultsand Discussions

In order to measure the prediction accuracy for the sub-

strates and nonsubstrates of P-gp with this model, we intro-

duced true positives (TP), true negatives (TN), falsepositives

(FP), false negatives (FN), sensitivity SE = TP/(TP+FN),

specificity SP = TN/(TN+FP). Sensitivity is the prediction

accuracy for positive examples and specificity is the predic-

tion accuracy for negative examples.28,29 In this study, posi-

tives are substrates and negatives are nonsubstrates.

In the first RP model using 2D descriptors, finally four

kinds of descriptors, which are Molecular weight, No_H_

donors, No_H_acceptors, and Topological_PSA, are used to

make a RP model. Table 1 summarizes the performance

parameters – accuracy, sensitivity, specificity, kappa, and MCC

– involving the training andtest sets. Matthews Correlation

Coefficient (MCC) values for the training and test sets were

0.58 and 0.38 where they were above 0, indicating improved

prediction compared to random prediction.30,31 Kappa values

for the training and test sets were 0.58 and 0.38, respectively.

According to the guideline for interpreting kappa values,

kappa of 0.41-0.60 is considered to be of moderate agree-

ment,32 and thus, we concluded that our RP model is a

predictive one. Using training set, Accuracy, sensitivity and

specificity of our model is 78.95%, 75.83% and 83.15% as

respectively (Table 1). This model has 9 nodes, 5 leaf nodes

and 4 depths. The model is illustrated in Figure 1. We

construct five-fold cross validation model to improve the

performance of our model using training set. Using test set,

we validated whether our model is robust or not. If the

results of training set are similar with the results of vali-

dation set, we can predict that our model will be robust and

have good performance with novel compounds. We obtained

slightly lower results of test set than the results of training

set. In the 2D RP model, accuracy of test set is 69.23%,

sensitivity is 65.38%, and specificity is 73.08%. For improv-

ing the predictability, we developed codes of two 3D

descriptors that were logP and PSA of molecule. In the

second RP model using 2D and 3D descriptors, the number

of final descriptors which are used for making a RP model is

four. Four descriptors are Molecular weight, No_H_donors,

SFED_logP, and C_PSA. Table 2 was tabulated the per-

formance parameters. The second model with 2D and 3D

descriptors shows better accurate rates not only training but

also test sets than the model with 2D descriptors. Accuracy

of test set is 79.37%, sensitivity is 79.31%, and specificity is

79.41%.

Many statistic methods have been developed for prediction

and physicochemical properties characterization of P-gp

substrates.28 Various research groups used these statistic

methods and complicated descriptors for classification P-gp

Figure 1. Decision tree and 2D descriptors built with 209
compounds of P-gp substrates and non-substrates in the training
set. Two classes were used: non-substrates (Nonsub; green) and
substrates (Sub; red). 2D descriptors from PreADMET were used.
The classified number of substrates and non-substrates for training
set is shown. The arrows show the direction of the branches.

Figure 2. Decision tree and 2D and 3D descriptors built with 198
compounds of P-gp substrates and non-substrates in the training
set. Two classes were used: non-substrates (Nonsub; green) and
substrates (Sub; red). 2D descriptors from PreADMET were used,
3D descriptors were developed in this study. The classified number
of substrates and non-substrates for training set is shown. The
arrows show the direction of the branches.
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substrates. In this study, our purpose is to suggest the P-gp

classification model that can be easily interpreted by medi-

cinal chemists, and easily applicable. Because the P-gp

substrates and inhibitors have structural diversity, it is diffi-

cult to identify the common structural elements. Therefore

intuitive and interpretable descriptors in this suggested RP

model can help medicinal chemist to develop and investigate

P-gp inhibitors. Additionally, we tried to perform the SVM

training with same descriptors for increasing the accuracy.

The results show a little increase of accuracy in Table S3.

Even the SVM model did not easily be interpreted in the

most cases, the model statistically demonstrated the increas-

ing accuracy compare with the RP model.

The First model adopted four 2D descriptors which are the

MW, the number of H-bond donors, the number of H-bond

acceptors and Topological_PSA. In the result of the first

model, about large-sized molecules (MW > 308.892), at

least one H-bond donors, many H-bond acceptors (> 10),

and high Topological_PSA (< 144.34) are important

elements for the P-gp substrate recognition. The second

model was described by two 2D and two 3D descriptors

which were the MW, the number of H-bond donors,

SFED_logP, 3D_PSA. In the results, about large-sized

molecules (MW > 320.1), at least one H-bond donors, low

logP (< 1.92), and highly polar C_PSA (> 195.95) are

important elements for the P-gp substrate recognition in

Figure 2. We tabulated all prediction results and category of

function in Table S1 and used descriptors in Table S2. Based

on analysis of the molecular size, the MW shows that small

molecules cannot be P-gp substrates.

The smallest drug substrate of P-gp is “Isosafrole (MW is

162.19 amu)” in the training and test set. Isosafrole is a

precursor for 3,4-(Methylenedioxy)phenyl-2-propanone

(MDP2P) which is converted into the psychoactive drug

MDMA (‘ecstasy’). The 20 molecules of P-gp substrate

include 10 central nervous system (CNS) drugs like Isosa-

frole, L_dopa, Phenobarbital, Phenytoin, Cimetidine, Nortri-

ptyline, Protriptyline, Morphine, Promazine and Ondanset-

ron, which have MW under 300.00, but 51 non-substrate,

which have MW under 300.00, only include 13 CNS drugs.

The P-gp plays a major role in drug efflux at the blood-brain

barrier, and may be an underlying factor in the variable

responses of patients to CNS drugs.33 The P-gp is involved

in multiple drug resistance in tumour therapy because it can

efflux structurally and functionally diverse compounds.34

The 28 compounds among the substrate data are anticancer

drugs in Figure 3, but only 5-compounds among the 115

nonsubstrate dataset are anticancer compounds. Antibiotics

are the most clinically important substrates of P-gp efflux

systems, the 37 compounds among substrate data are anti-

biotics compounds in Figure 3. Resistance to antibiotics

occurs typically as a result of drug inactivation/modification,

target alteration and reduced accumulation owing to de-

creased permeability and/or increased efflux.35

In the work of Xue et al.,29 they built the P-gp substrate

prediction model using SVM with 2D descriptors like a

number of H-bond donors, sum of charge weighted solvent

accessible surface areas of positive charged atoms and many

topological descriptors. In the work of Pajeva and Wiese,36 a

general pharmacophore pattern was proposed for the vera-

pamil of P-gp substrate that involved two hydrophobic

features, three H-bond acceptors and one H-bond donor. In

our study, molecular features used in RP models show con-

sistency with this general pharmacophore pattern. Number

of H-bond donors is very important descriptor, both RP

models suggest that a compound with the zero number of H-

bond donors is discriminated as a nonsubstrate. In the work

of Wang et al.,15 unsupervised machine learning approach

was explored with some molecular descriptors include

SHbint3 descriptor which definition is E-state descriptors of

potential internal H-bond strength that described the H-bond

in a molecule in spatial distance. The role of the number of

H-bonds suggested as an essential structural requirement for

P-gp recognition. Although we cannot determine how many

hydrogen bonds are essential for the identification of sub-

strate of P-gp, it seems that many hydrogen bonds are

concerned in specificity of substrates of P-gp.

P-gp, ABC-multidrug transporters, are distributed and

expressed in many organs and found especially in the blood-

brain barrier, the bile-canalicular membrane of hepatocytes,

apical lumen of the intestine and the kidney.37,38 The ability

of drugs to interact with P-gp, therefore, is strongly related

with bioavailability of drugs, as well as drug-drug inter-

actions. In metabolism phases in the liver, P-gp exports

metabolites into the bile. In the aspect of metabolism

process, P-gp trap metabolites and assist exportation of these

metabolites, which become hydrophilic after interacting with

CYP enzymes. Consequently, the PSA would be important

feature to distinguish whether the compounds are substrate

or not. In Figure 2, the RP model using 3D descriptors

shows that PSA discriminate substrates with high polarity

(C_PSA > 195.95) from dataset. 

Exogenous substrates such as xenobiotics and toxins are

caught by P-gp after partitioning into the plasma membrane

but before reaching the cytosol and are then exported or

flipped at the expense of ATP hydrolysis.39 Romsicki et al.40

investigated that the lipid-water partitioning coefficient,

logP, of P-gp substrates increased as binding affinity of

substrates to P-gp in parallel manner. In our RP model using

2D and 3D descriptors, molecules with lower SFED_logP

Figure 3. Distribution of the 146-substrate data set, in terms of
category of functions.
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(< −8.25), which are relatively hydrophilic, are classified as

non-substrates. It is consistent with the fact that hydrophilic

drugs or toxins are inserted into membrane first and

accumulated in the lipid environment. Experimentally the

concentration of drug in the membrane is important for the

interaction with P-gp.40 In our 2D and 3D descriptor model,

SFED_logP predicted that relatively hydrophilic compounds

are substrates among predicted nonsubstrates group.

Conclusion

There are many examples of the significance of drug

transporters to the clinical development of drugs that have

been described. For instance, drug-drug interactions and

modifying molecules for uptake transporters. Identifying

molecules that interact with P-gp transporters is important

for drug discovery, but it is commonly determined through

laborious in vitro and in vivo studies. Computational classi-

fication model can be used to screen large chemical data-

bases of molecules rapidly and propose those likely to bind

as substrates for P-gp.

In this study, the RP approach has been used a successful

methodology to classify P-gp substrates and nonsubstrates.

We used small number of descriptors and interpretable

descriptors. The interpretable descriptors mean that we can

analyze their physical meaning easily. We developed some

3D descriptors for increasing accuracy. The model develop-

ed in this workis easily calculated and suitable for the rapid

prediction of P-gp substrate. We expect that our models can

accelerate the virtual screening in the early stages of drug

discovery while considering whether a compound includes a

P-gp substrate specificity or not.
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