• 제목/요약/키워드: in-silico prediction

검색결과 60건 처리시간 0.027초

독성발현경로(Adverse Outcome Pathway)를 활용한 In Silico 예측기술 연구동향 분석 (Trend of In Silico Prediction Research Using Adverse Outcome Pathway)

  • 이수진;박종서;김선미;서명원
    • 한국환경보건학회지
    • /
    • 제50권2호
    • /
    • pp.113-124
    • /
    • 2024
  • Background: The increasing need to minimize animal testing has sparked interest in alternative methods with more humane, cost-effective, and time-saving attributes. In particular, in silico-based computational toxicology is gaining prominence. Adverse outcome pathway (AOP) is a biological map depicting toxicological mechanisms, composed of molecular initiating events (MIEs), key events (KEs), and adverse outcomes (AOs). To understand toxicological mechanisms, predictive models are essential for AOP components in computational toxicology, including molecular structures. Objectives: This study reviewed the literature and investigated previous research cases related to AOP and in silico methodologies. We describe the results obtained from the analysis, including predictive techniques and approaches that can be used for future in silico-based alternative methods to animal testing using AOP. Methods: We analyzed in silico methods and databases used in the literature to identify trends in research on in silico prediction models. Results: We reviewed 26 studies related to AOP and in silico methodologies. The ToxCast/Tox21 database was commonly used for toxicity studies, and MIE was the most frequently used predictive factor among the AOP components. Machine learning was most widely used among prediction techniques, and various in silico methods, such as deep learning, molecular docking, and molecular dynamics, were also utilized. Conclusions: We analyzed the current research trends regarding in silico-based alternative methods for animal testing using AOPs. Developing predictive techniques that reflect toxicological mechanisms will be essential to replace animal testing with in silico methods. In the future, since the applicability of various predictive techniques is increasing, it will be necessary to continue monitoring the trend of predictive techniques and in silico-based approaches.

In Silico Prediction of Organ Level Toxicity: Linking Chemistry to Adverse Effects

  • Cronin, Mark T.D.;Enoch, Steven J.;Mellor, Claire L.;Przybylak, Katarzyna R.;Richarz, Andrea-Nicole;Madden, Judith C.
    • Toxicological Research
    • /
    • 제33권3호
    • /
    • pp.173-182
    • /
    • 2017
  • In silico methods to predict toxicity include the use of (Quantitative) Structure-Activity Relationships ((Q)SARs) as well as grouping (category formation) allowing for read-across. A challenging area for in silico modelling is the prediction of chronic toxicity and the No Observed (Adverse) Effect Level (NO(A)EL) in particular. A proposed solution to the prediction of chronic toxicity is to consider organ level effects, as opposed to modelling the NO(A)EL itself. This review has focussed on the use of structural alerts to identify potential liver toxicants. In silico profilers, or groups of structural alerts, have been developed based on mechanisms of action and informed by current knowledge of Adverse Outcome Pathways. These profilers are robust and can be coded computationally to allow for prediction. However, they do not cover all mechanisms or modes of liver toxicity and recommendations for the improvement of these approaches are given.

Isomer Differentiation Using in silico MS2 Spectra. A Case Study for the CFM-ID Mass Spectrum Predictor

  • Milman, Boris L.;Ostrovidova, Ekaterina V.;Zhurkovich, Inna K.
    • Mass Spectrometry Letters
    • /
    • 제10권3호
    • /
    • pp.93-101
    • /
    • 2019
  • Algorithms and software for predicting tandem mass spectra have been developed in recent years. In this work, we explore how distinct in silico $MS^2$ spectra are predicted for isomers, i.e. compounds having the same formula and similar molecular structures, to differentiate between them. We used the CFM-ID 2.0/3.0 predictor with regard to (a) test compounds, whose experimental mass spectra had been randomly sampled from the MassBank of North America (MoNA) collection, and to (b) the most widespread isomers of test compounds searched in the PubChem database. In the first validation test, in silico mass spectra constitute a reference library, and library searches are performed for test experimental spectra of "unknowns". The searches led to the true positive rate (TPR) of ($46-48{\pm}10$)%. In the second test, in silico and experimental spectra were interchanged and this resulted in a TPR of ($58{\pm}10$)%. There were no significant differences between results obtained with different metrics of spectral similarity and predictor versions. In a comparison of test compounds vs. their isomers, a statistically significant correlation between mass spectral data and structural features was observed. The TPR values obtained should be regarded as reasonable results for predicting tandem mass spectra of related chemical structures.

In Silico Functional Assessment of Sequence Variations: Predicting Phenotypic Functions of Novel Variations

  • Won, Hong-Hee;Kim, Jong-Won
    • Genomics & Informatics
    • /
    • 제6권4호
    • /
    • pp.166-172
    • /
    • 2008
  • A multitude of protein-coding sequence variations (CVs) in the human genome have been revealed as a result of major initiatives, including the Human Variome Project, the 1000 Genomes Project, and the International Cancer Genome Consortium. This naturally has led to debate over how to accurately assess the functional consequences of CVs, because predicting the functional effects of CVs and their relevance to disease phenotypes is becoming increasingly important. This article surveys and compares variation databases and in silico prediction programs that assess the effects of CVs on protein function. We also introduce a combinatorial approach that uses machine learning algorithms to improve prediction performance.

A highly efficient computational discrimination among Streptococcal species of periodontitis patients using 16S rRNA amplicons

  • Al-Dabbagh, Nebras N.;Hashim, Hayder O.;Al-Shuhaib, Mohammed Baqur S.
    • 미생물학회지
    • /
    • 제55권1호
    • /
    • pp.1-8
    • /
    • 2019
  • Due to the major role played by several species of Streptococcus in the etiology of periodontitis, it is important to assess the pattern of Streptococcus pathogenic pathways within the infected subgingival pockets using a bacterial specific 16S rRNA fragment. From the total of 50 patients with periodontitis included in the study, only 23 Streptococcal isolates were considered for further analyses, in which their 16S rRNA fragments were amplified and sequenced. Then, a comprehensive phylogenetic tree was constructed and in silico prediction was performed for the observed Streptococcal species. The phylogenetic analysis of the subgingival Streptococcal species revealed a high discrimination power of the 16S rRNA fragment to accurately identify three groups of Streptococcus on the species level, including S. salivarius (14 isolates), S. anginosus (5 isolates), and S. gordonii (4 isolates). The employment of state-of-art in silico tools indicated that each Streptococcal species group was characterized with particular transcription factors that bound exclusively with a different 16S rRNA-based secondary structure. In conclusion, the observed data of the present study provided in-depth insights into the mechanism of each Streptococcal species in its pathogenesis, which differ in each observed group, according to the differences in the 16S rRNA secondary structure it takes, and the consequent binding with its corresponding transcription factors. This study paves the way for further interventions of the in silico prediction, with the main conventional in vitro microbiota identification to present an interesting insight in terms of the gene expression pattern and the signaling pathway that each pathogenic species follows in the infected subgingival site.

The Predictive QSAR Model for hERG Inhibitors Using Bayesian and Random Forest Classification Method

  • Kim, Jun-Hyoung;Chae, Chong-Hak;Kang, Shin-Myung;Lee, Joo-Yon;Lee, Gil-Nam;Hwang, Soon-Hee;Kang, Nam-Sook
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권4호
    • /
    • pp.1237-1240
    • /
    • 2011
  • In this study, we have developed a ligand-based in-silico prediction model to classify chemical structures into hERG blockers using Bayesian and random forest modeling methods. These models were built based on patch clamp experimental results. The findings presented in this work indicate that Laplacian-modified naive Bayesian classification with diverse selection is useful for predicting hERG inhibitors when a large data set is not obtained.

In silico target identification of biologically active compounds using an inverse docking simulation

  • Choi, Youngjin
    • 셀메드
    • /
    • 제3권2호
    • /
    • pp.12.1-12.4
    • /
    • 2013
  • Identification of target protein is an important procedure in the course of drug discovery. Because of complexity, action mechanisms of herbal medicine are rather obscure, unlike small-molecular drugs. Inverse docking simulation is a reverse use of molecular docking involving multiple target searches for known chemical structure. This methodology can be applied in the field of target fishing and toxicity prediction for herbal compounds as well as known drug molecules. The aim of this review is to introduce a series of in silico works for predicting potential drug targets and side-effects based on inverse docking simulations.

In silica Prediction of Angiogenesis-related Genes in Human Hepatocellular Carcinoma

  • Kang, Seung-Hui;Park, Jeong-Ae;Hong, Soon-Sun;Kim, Kyu-Won
    • Genomics & Informatics
    • /
    • 제2권3호
    • /
    • pp.134-141
    • /
    • 2004
  • Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and a typical hypervascular tumor. Therefore, it is important to find factors related to angiogenesis in the process of HCC malignancy. In order to find angiogenesis-related factors in HCC, we used combined methods of in silico prediction and an experimental assay. We analyzed 1457 genes extracted from cDNA microarray of HCC patients by text-mining, sequence similarity search and domain analysis. As a result, we predicted that 16 genes were likely to be involved in angiogenesis and then the effects of these genes were confirmed by hypoxia response element(HRE)-luciferase assay. For instant, we classified osteopontin into a potent angiogenic factor and coagulation factor XII into a significant anti­angiogenic factor. Collectively, we suggest that using a combination of in silico prediction and experimental approaches, we can identify HCC-specific angiogenesis­related factors effectively and rapidly.

Prediction of Maximum Yields of Metabolites and Optimal Pathways for Their Production by Metabolic Flux Analysis

  • Hong, Soon-Ho;Moon, Soo-Yun;Lee, Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • 제13권4호
    • /
    • pp.571-577
    • /
    • 2003
  • The intracellular metabolic fluxes can be calculated by metabolic flux analysis, which uses a stoichiometric model for the intracellulal reactions along with mass balances around the intracellular metabolites. In this study, metabolic flux analyses were carried out to estimate flux distributions for the maximum in silico yields of various metabolites in Escherichia coli. The maximum in silico yields of acetic acid and lactic acid were identical to their theoretical yields. On the other hand, the in silico yields of succinic acid and ethanol were only 83% and 6.5% of their theoretical yields, respectively. The lower in silico yield of succinic acid was found to be due to the insufficient reducing power. but this lower yield could be increased to its theoretical yield by supplying more reducing power. The maximum theoretical yield of ethanol could be achieved, when a reaction catalyzed by pyruvate decarboxylase was added in the metabolic network. Futhermore, optimal metabolic pathways for the production of various metabolites could be proposed, based on the results of metabolic flux analyses. In the case of succinic acid production, it was found that the pyruvate carboxylation pathway should be used for its optimal production in E. coli rather than the phosphoenolpyruvate carboxylation pathway.