Browse > Article

In silica Prediction of Angiogenesis-related Genes in Human Hepatocellular Carcinoma  

Kang, Seung-Hui (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Interdisciplinary Program in Bioinformatics, Seoul National University)
Park, Jeong-Ae (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Hong, Soon-Sun (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University)
Kim, Kyu-Won (College of Pharmacy and Research Institute of Pharmaceutical Sciences, Seoul National University, Interdisciplinary Program in Bioinformatics, Seoul National University)
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignancies worldwide and a typical hypervascular tumor. Therefore, it is important to find factors related to angiogenesis in the process of HCC malignancy. In order to find angiogenesis-related factors in HCC, we used combined methods of in silico prediction and an experimental assay. We analyzed 1457 genes extracted from cDNA microarray of HCC patients by text-mining, sequence similarity search and domain analysis. As a result, we predicted that 16 genes were likely to be involved in angiogenesis and then the effects of these genes were confirmed by hypoxia response element(HRE)-luciferase assay. For instant, we classified osteopontin into a potent angiogenic factor and coagulation factor XII into a significant anti­angiogenic factor. Collectively, we suggest that using a combination of in silico prediction and experimental approaches, we can identify HCC-specific angiogenesis­related factors effectively and rapidly.
Keywords
HCC; hepatocellular carcinoma; bioinformatics; angiogenesis; hmmer; blast;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Hirama, M., Takahashi, F., Takahashi, K., Akutagawa, S., Shimizu, K., Soma, S., Shimanuki, Y., Nishio, K., and Fukuchi, Y. (2003). Osteopontin overproduced by tumor cells acts as a potent angiogenic factor contributing to tumor growth. Cancer Lett. 198, 107-117   DOI   ScienceOn
2 Kim, J.S., Chang, J.H., Yu, H.K, Ahn, J.H., Yum, J.S., Lee, S.K., Jung, K.H., Park, D.H, Yoon, Y., Byun, S. M., and Chung, S.I. (2003). Inhibition of angiogenesis and angiogenesis-dependent tumor growth by the cryptic Kringle fragments of human apolipoprotein(a). J. BioI. Chem. 278, 29000-29008   DOI   ScienceOn
3 Kim, K.W., Bae, S.K., Lee, O.H., Bae, M.H., Lee, M.J., and Park, B.C. (1998). Insulin-like growth factor II induced by hypoxia may contribute to angiogenesis of human hepatocellular carcinoma. Cancer Res. 58, 348-351   PUBMED
4 Mise, M., Arii, S., Higashituji, H., Furutani, M., Niwano, M., Harada, T., Ishigami, S., Toda, Y., Nakayama, H., Fukumoto, M., Fujita, J., and Imamura, M. (1996). Clinical significance of vascular endothelial growth factor and basic fibroblast growth factor gene expression in liver tumor. Hepatology 23, 455-464   DOI   PUBMED
5 Nakashima, Y., Nakashima, O., Hsia, C.C., Kojiro, M., and Tabor, E. (1999). Vascularization of small hepatocellular carcinomas: correlation with differentiation. Liver 19, 12-18   DOI   ScienceOn
6 Tsai, C.C., Chung, Y.D., Lee, H.J., Chang, W.H., Suzuku, Y, Sugano, S., and Lin, J. Y. (2003). Large-scale sequencing analysis of the full-length eDNA library of human hepatocellular carcinoma. J. Biomed Sci. 10, 636-643   DOI   PUBMED
7 Risau, W, (1997). Mechanisms of angiogenesis. Nature. 386,671-674   DOI   PUBMED   ScienceOn
8 McLean, J.W., Tomlinson, J.E., Kuang, W.J., Eaton, D.L., Chen, E.Y., Fless, G.M., Scanu, A.M., and Lawn, R.M. (1987). eDNA sequence of human apolipoprotein(a) is homologous to plasminogen. Nature 330, 132-137   DOI   ScienceOn
9 Miyazawa, K., Shimomura, T., and Kitamura, N. (1996). Activation of hepatocyte growth factor in the injured tissues is mediated by hepatocyte growth factor activator. J. BioI. Chem. 271, 3615-3618   DOI
10 Tuszynski, G.P., Sharma, M.R., Rothman, V.L., and Sharma, M.C. (2002). Angiostatin binds to tyrosine kinase substrate annexin II through the lysine-binding domain in endothelial cells. Microvasc. Res. 64, 448-462   DOI   ScienceOn
11 Corvol, P., Lamande, N., Cruz, A., Celerier, J, and Gasc, J. M. (2003). Inhibition of angiogenesis: a new function for angiotensinogen and des(angiotensin I)angiotensinogen. Curr. Hypertens. Rep. 5(2).149-154   DOI   ScienceOn
12 Pan, H.W', Ou, Y.H., Peng, S.Y., Liu, S.H., Lai, P.L., Lee, P.H, Sheu, J.C., Chen, C.L., and Hsu, H.C. (2003). Overexpression of osteopontin is associated with intrahepatic metastasis, early recurrence, and poorer prognosis of surgically resected hepatocellular carcinoma. Cancer 98, 119-127   DOI   ScienceOn
13 Levy, A.P., Levy, N.S., Wegner, S., and Goldberg, M. A (1995). Transcriptional regulation of the rat vascular endothelial growth factor gene by hypoxia. J. BioI. Chem. 270, 13333-13340   DOI   ScienceOn
14 Cao, Y., Cao, R., and Veitonmaki, N. (2002). Kringle structures and antiangiogenesis. Curr. Med. Chem. Anti-Cane. Agents. 2, 667-681   DOI   ScienceOn
15 Eatock, M.M., Schatzlein, A, and Kaye, S.B. (2000). Tumour vasculature as a target for anticancer therapy. Cancer Treat. Rev. 26, 191-204   DOI   ScienceOn
16 Han, Z., Ni, J., Smits, P., Underhill, C.B., Xie, B., Chen, Y., Liu, N., Tylzanowski, P., Parmelee, D., Feng, P., Ding, I., Gao, F., Gentz, R., Huylebroeck, D., Merregaert, J., and Zhang, L. (2001). Extracellular matrix protein 1 (ECM1) has angiogenic properties and is expressed by breast tumor cells. FASEB J. 15,988-994   DOI   ScienceOn
17 Ishikawa, H., Heaney, A.P., Yu, R., Horwitz, G.A, and Melmed, S. (2001). Human pituitary tumor-transforming gene induces angiogenesis. J. Clin Endocrinol Metab. 86,867-874   DOI   ScienceOn
18 Lin, X., Tombler, E., Nelson, P. J., Ross, M., and Gelman, I.H. (1996). A novel src- and ras-suppressed protein kinase C substrate associated with cytoskeletal architecture. J. BioI. Chem. 271 , 28430-28438   DOI   ScienceOn
19 Shimomura, T., Miyazawa, K., Komiyama, Y., Hiraoka, H., Naka, D., Morimoto, Y., and Kitamura, N. (1995). Activation of hepatocyte growth factor by two homologous proteases, blood-coagulation factor Xlla and hepatocyte growth factor activator. Eur. J. Biochem. 229, 257-261   DOI   ScienceOn
20 Taniura, H., Matsumoto, K., and Yoshikawa, K. (1999). Physical and functional interactions of neuronal growth suppressor necdin with p53. J. Biol. Chem. 274,16242-16248   DOI   PUBMED
21 Ye, O.H., Oin, L.X., Forgues, M., He, P., Kim, J.W., Peng, A.C., Simon, R., Li, Y., Robles, A.I., Chen, Y., Ma, Z.C., Wu, Z.Q., Ye, S.L., Liu, Y.K., Tang, Z.Y., and Wang, X.W. (2003). Predicting hepatitis B virus-positive metastatic hepatocellular carcinomas using gene expression profiling and supervised machine learning. Nat. Med. 9, 416-423   DOI   ScienceOn
22 Lee, S.W., Kim, W.J., Choi, Y.K., Song, H.S., Son, M.J., Gelman, I.H., Kim, Y.J., and Kim, K.W.' (2003). SSeCKS regulates angiogenesis and tight junction formation in blood-brain barrier. Nat. Med. 9, 900-906   DOI   ScienceOn
23 Anders, R.A, Yerian, L.M., Tretiakova, M., Davison, J.M., Quigg, R.J., Domer, P.H, Hoberg, J., and Hart, J. (2003). cDNA microarray analysis of macroregenerative and dysplastic nodules in end-stage hepatitis C virus-induced cirrhosis. Am. J. Pathol. 162,991-1000   DOI   PUBMED   ScienceOn
24 Kobayashi, M., Taniura, H., and Yoshikawa, K. (2002). Ectopic expression of necdin induces differentiation of mouse neuroblastoma cells. J. BioI. Chem. 277, 42128-42135   DOI   ScienceOn
25 Bae, M.K., Jeong, J.W., Kim, S.H., Kim, D.M., Yun, II, Trentin, Grace A., Rozakis-Adcock, Maria., and Kim, K. W. (2004). Tid-1 interacts with pVHL and modulates angiogenesis by destabilization of HIF-1a. Cancer Res. revised
26 Park, B.C., Huh, M.H, and Se, J.H. (1995). Differential expression of transforming growth factor alpha and insulin-like growth factor II in chronic active hepatitis B, cirrhosis and hepatocellular carcinoma. J. Hepatology 22, 286-294   DOI   ScienceOn
27 Yamaguchi, R, Yano, H, lemura, A, Ogasawara, S, Haramaki, M., and Kojiro, M. (1998). Expression of vascular endothelial growth factor in human hepatocellular carcinoma. Hepatology 28, 68-77   DOI   ScienceOn
28 Deckers, M.M., Smits, P., Karperien, M.,Ni, J., Tylzanowski, P., Feng, P., Parmelee, D., Zhang, J., Bouffard, E., Gentz, R., Lowik, C.W., and Merregaert, J. (2001). Recombinant human extracellular matrix protein 1 inhibits alkaline phosphatase activity and mineralization of mouse embryonic metatarsals in vitro. Bone 28, 14-20   DOI   ScienceOn
29 Folkman, J. (1990). What is the evidence that tumors are angiogenesis dependent? J. Natl. Cancer Inst. 82, 4-6   DOI   PUBMED
30 Denhardt, D.T. and Guo, X. (1993). Osteopontin: a protein with diverse functions. FASEB J. 7,1475-1482   PUBMED
31 Sohn, T.K., Moon, E.J., Lee, S.K., Cho, H.G.. , and Kim, K.W. (2002). AngioDB: database of angiogenesis and angiogenesis-related molecules. Nucleic Acids Res. 30, 369-371   DOI   ScienceOn
32 Steel, L.F., Shumpert, D., Trotter, M., Seeholzer, S.H., Evans, A.A., London, W.T., Dwek, R., and Block, T. M. (2003). A strategy for the comparative analysis of serum proteomes for the discovery of biomarkers for hepatocellular carcinoma. Proteamics 3, 601-609   DOI   ScienceOn
33 Delpuech, O., Trabut, J.B., Carnot, F., Feuillard, J., Brechot, C., and Kremsdorf, D. (2002). Identification, using eDNA macroarray analysis, of distinct gene expression profiles associated with pathological and virological features of hepatocellular carcinoma. Oncogene 21, 2926-2937   DOI   ScienceOn
34 Feitelson, M.A, Sun, B., Satiroglu Tufan, N.L., Liu, J., Pan, J., and Lian, Z. (2002). Genetic mechanisms of hepatocarcinogenesis. Oncogene 21 , 2593-2604   DOI   ScienceOn
35 Trentin, G.A, Yin, X., Tahir, S., Lhotak, S., Farhang-Fallah, J., Li, Y., and Rozakis-Adcock, M. (2001). A mouse homologue of the Drosophila tumor suppressor 1(2)tid gene defines a novel Ras GTPase-activating protein (RasGAP)-binding protein. J. Biol. Chem. 276, 13087-13095   DOI   ScienceOn