• Title/Summary/Keyword: in-position

Search Result 26,493, Processing Time 0.056 seconds

Precise Position Synchronous Control of Four-Axes System Based on Acceleration Control (가속도제어에 의한 4축 시스템의 정밀 위치동기제어)

  • Jeong, Seok-Kwon;Choi, Bong-Seok;You, Sam-Sang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.9
    • /
    • pp.1245-1254
    • /
    • 2004
  • In this paper, we deal with a precise position synchronous control of four-axes system which is working under various load disturbances. Each axis driving system is consisted of a speed controller and an acceleration controller as an inner loop instead of conventional current control scheme. The acceleration control plays an important roll to suppress load disturbances quickly. Also, each axis is coupled by a maximum position synchronous error comparison to minimize position synchronous errors according to integration of speed differency. As a result, the proposed system enables precise synchronous control with good robustness against load disturbances during transient as well as steady state. The stability and robustness of the proposed system are investigated through its frequency characteristic and numerical simulations. Finally, experimental results under load disturbances demonstrate the effectiveness of the proposed control system fur four-axes position synchronous control.

Implementation of Position Decision System by Stepping Motor (스테핑 모터를 이용한 위치 판독 시스템의 구현)

  • Ham, Eun-Sik;Heo, Gang;Gong, Hwi-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2003.11b
    • /
    • pp.299-303
    • /
    • 2003
  • Position decision system embody to interpret for observation target position. Observation target is observed at observation post of 3 places. CCD cameras of observation post is achieved turning control by stepping motor. Controller interpret observation target's position to use direction and angle information of observation post. Controller and observation post used PIC16F877. PIC16F877 achieves rotation control of stepping motor and distance arithmetic of observation target. Result that measure this system 50 times was achieved correct position interpretation of 47 times. Position interpretation failure of 3 times was construed for cause in used controller special quality.

  • PDF

Measuring Acoustical Parameters of English Words by the Position in the Phrases (영어어구의 위치에 따른 단어의 음향 변수 측정)

  • Yang, Byung-Gon
    • Speech Sciences
    • /
    • v.14 no.4
    • /
    • pp.115-128
    • /
    • 2007
  • The purposes of this paper were to develop an automatic script to collect such acoustic parameters as duration, intensity, pitch and the first two formant values of English words produced by two native Canadian speakers either alone or in a two-word phrase at a normal speed and to compare those values by the position in the phrases. A Praat script was proposed to obtain the comparable parameters at evenly divided time point of the target word. Results showed that the total duration of the word in the phrase was shorter than that of the word produced alone. That was attributed to the pronunciation style of the native speakers generally placing the primary word stress in the first word position. Also, the reduction ratio of the male speaker depended on the word position in the phrase while the female speaker didn't. Moreover, there were different contours of intensity and pitch by the position of the target word in the phrase while almost the same formant patterns were observed. Further studies would be desirable to examine those parameters of the words in the authentic speech materials.

  • PDF

Development of Relative Position Measuring Device for Moving Target in Local Area (국소영역에서 이동표적의 상대위치 측정 장치 개발)

  • Seo, Myoung Kook
    • Journal of Drive and Control
    • /
    • v.17 no.4
    • /
    • pp.8-14
    • /
    • 2020
  • Intelligent devices using ICT technology have been introduced in the field of construction machinery to improve productivity and stability. Among the intelligent devices, Machine Guidance is a device that provides real-time posture, location, and work range to drivers by installing various sensors, controllers, and satellite navigation systems on construction machines. Conversely, the efficiency of equipment that requires location information, such as machine guidance, will be greatly reduced in buildings, and tunnels in the GPS blind spots. Thus, the other high-precision positioning technologies are required in the GPS blind spot zone. In this study, we will develop a relative position measurement system that provides precise location information such as construction machinery and robots in a local area where the GPS reception is difficult. A relative position measurement system tracks a marker in the form of a sphere installed on a vehicle by using the image base tracking technology, and measures the distance and direction information to the marker to calculate a position.

A COMPARATIVE STUDY ABOUT THE POSITION OF UPPER AND LOWER JAWS, AND FIRST MOLARS IN NORMAL OCCLUSION AND ANGLE'S CLASS $I{\cdot}II{\cdot}III$ MALOCCLUSIONS (정상교합과 부정교합에서의 상${\cdot}$하악골과 제 1 대구치 위치에 관한 비교연구)

  • Yun, Byoung-Mo;Ahn, Byoung-Keun;Rhee, Geon-Ju;Kim, Sun-Hae;Park, Young-Ju;Han, Ho-Jin
    • The korean journal of orthodontics
    • /
    • v.23 no.4 s.43
    • /
    • pp.633-644
    • /
    • 1993
  • There has been so much controversies about the position of upper and lower jaws, and their first permanent molars in normal occlusion and Angle's class $I{\cdot}II{\cdot}III$ malocclusions. So, the purpose of this study is to compare the position of upper and lower jaws, and their first molars in normal occlusion and Angle's class $I{\cdot}II{\cdot}III$ malocclusions by lateral cephalometric analysis. The sample consisted of one hundred and twenty girls(thirty in each group) who had completed growth. The findings of this study were as follows : 1. In class I malocclusion, both maxilla and mandible were slightly posterior position than normal occlusion, but they showed harmonious relationship. 2. In class II malocclusion, the mandible was greatly retruded, and the maxilla was also slightly retruded to the cranial base as compared with normal occlusion. 3. In class III malocclusion, the maxilla was significantly retruded to the cranial base, but no significant difference was found in mandibular position as compared with normal occlusion. 4. The maxillary first molar was located at posterior position in class II malocclusion, and anterior position in class III malocclusion to the cranium, so that the rotation of mandible was influenced by that. 5. The mandibular first molar showed constant relationship to the mandible in all four groups, but different position to the cranial base in direct proportion to the mandibular position. 6. On the treatment planning of class III malocclusion, it seems to be better to promote the mandibular horizontal growth by inhibiting the vertical growth of maxillary molar area, and on the treatment planning of class III malocclusion, it seems to be better to promote the antero-inferior growth of maxilla mi to promote the mandibular vertical growth by inducing the vertical growth of maxillary molar area.

  • PDF

Sensorless driving strategy of Single-Phase Hybrid SRM basing on Back-EMF detection (역기전력을 이용한 단상 하이브리드 SRM의 위치 추정 방법)

  • Tang, Ying;Lee, Donghee;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.521-522
    • /
    • 2016
  • This paper presents a novel scheme to estimate the rotor position of a single-phase hybrid switched reluctance motor (HSRM). The proposed method uses the differential of back-EMF within a position region to estimate rotor position. By detecting the crossing-zero signal of back-EMF differential value, the minimum position of back-EMF corresponding to an absolute rotor position can be captured and used for position estimation four times in every mechanical rotation. In this way, a sensorless operation with adjustable turn on/off angle can be achieved without substantial computation. For the starting, two current comparators are adopted. The experimental verification using a prototype drive system is provided to demonstrate the viability of the proposed sensorless scheme.

  • PDF

Automatic Guidance System for Tractor based upon Position-measurement Systems (위치(位置) 측정장치(測定裝置)를 이용한 트랙터의 자동(自動) 주행장치(走行裝置))

  • Choi, C.H.
    • Journal of Biosystems Engineering
    • /
    • v.15 no.2
    • /
    • pp.79-87
    • /
    • 1990
  • An automatic guidance system based upon two position-measurement systems was designed to record where the tractor traveled and to guide the tractor along the predetermined path. An algorithm, using the kinematic behavior of tractor movement, was developed to determine the steering angle to reduce lateral position error. The algorithm was based upon constant travel speed, constant steering rate, and zero slip angles of the tractor wheels. The algorithm was evaluated through use of computer simulation and verified in field experiments. Results showed that the distance interval between position measurements was an important factor in guidance system performance. The position-measurement error of the guidance system must be less than 5 cm to be acceptably precise for field operations. An algorithm based upon a variable steering rate might improve the stability of the guidance system. More accurate measurement of tractor position and yaw angle, and faster error processing are required to improve the field performance of the guidance system.

  • PDF

Compensative Microstepping Based Position Control with Passive Nonlinear Adaptive Observer for Permanent Magnet Stepper Motors

  • Kim, Wonhee;Lee, Youngwoo;Shin, Donghoon;Chung, Chung Choo
    • Journal of Electrical Engineering and Technology
    • /
    • v.12 no.5
    • /
    • pp.1991-2000
    • /
    • 2017
  • This paper presents a compensative microstepping based position control with passive nonlinear adaptive observer for permanent magnet stepper motor. Due to the resistance uncertainties, a position error exists in the steady-state, and a ripple of position error appears during operation. The compensative microstepping is proposed to remedy this problem. The nonlinear controller guarantees the desired currents. The passive nonlinear adaptive observer is designed to estimate the phase resistances and the velocity. The closed-loop stability is proven using input to state stability. Simulation results show that the position error in the steady-state is removed by the proposed method if the persistent excitation conditions are satisfied. Furthermore, the position ripple is reduced, and the Lissajou curve of the phase currents is a circle.

Anti-swing and position control of crane using fuzzy controller (퍼지제어기를 이용한 크레인의 진동억제 및 위치제어)

  • Jeong, Seung-Hyun;Park, Jung-Il
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.435-442
    • /
    • 1997
  • The roof crane system is used for transporting a variable load to a target position. The goal of crane control system is transporting the load to a goal position as quick as possible without rope oscillation. The crane is generally operated by an expert operator, but recently an automatic control system with high speed and rapid tansportation is required. In this paper, we developed a simple fuzzy controller which has been introduced expert's knowledge base for anti-swing and rapid tranportation to goal position. In particular, we proposed the synthesis reasoning method which synthesizes on the basis of expert knowledge of the angle control input and position control input which are inferenced parallel and simultaneously. And we confirmed that the performance of the developed controller is effective as a result of applying it to crane simulator and also verified whether the proposed synthesis rules have been applied correctly using clustering algorithm from the measured data.

  • PDF

Estimation of the position and orientation of the mobile robot using camera calibration (카메라 캘리브레이션을 이용한 이동로봇의 위치 및 자세 추정)

  • 정기주;최명환;이범희;고명삼
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1992.10a
    • /
    • pp.786-791
    • /
    • 1992
  • When a mobile robot moves from one place to another, position error occurs due to the limit of accuracy of robot and the effect of environmental noise. In this paper. an accurate method of estimating the position and orientation of a mobile robot using the camera calibration is proposed. Kalman filter is used as the estimation algorithm. The uncertainty in the position of camera with repect to robot base frame is considered well as the position error of the robot. Besides developing the mathematical model for mobile robot calibration system, the effect of relative position between camera and calibration points is analyzed and the method to select the most accurate calibration points is also presented.

  • PDF