• 제목/요약/키워드: in-plane shear stresses

검색결과 113건 처리시간 0.019초

Dynamic Analysis of Laminated Composite and Sandwich Plates Using Trigonometric Layer-wise Higher Order Shear Deformation Theory

  • Suganyadevi, S;Singh, B.N.
    • International Journal of Aerospace System Engineering
    • /
    • 제3권1호
    • /
    • pp.10-16
    • /
    • 2016
  • A trigonometric Layerwise higher order shear deformation theory (TLHSDT) is developed and implemented for free vibration and buckling analysis of laminated composite and sandwich plates by analytical and finite element formulation. The present model assumes parabolic variation of out-plane stresses through the depth of the plate and also accomplish the zero transverse shear stresses over the surface of the plate. Thus a need of shear correction factor is obviated. The present zigzag model able to meet the transverse shear stress continuity and zigzag form of in-plane displacement continuity at the plate interfaces. Hence, botheration of shear correction coefficient is neglected. In the case of analytical method, the governing differential equation and boundary conditions are obtained from the principle of virtual work. For the finite element formulation, an efficient eight noded $C^0$ continuous isoparametric serendipity element is established and employed to examine the dynamic analysis. Like FSDT, the considered mathematical model possesses similar number of variables and which decides the present models computationally more effective. Several numerical predictions are carried out and results are compared with those of other existing numerical approaches.

FE modeling for geometrically nonlinear analysis of laminated plates using a new plate theory

  • Bhaskar, Dhiraj P.;Thakur, Ajaykumar G.
    • Advances in aircraft and spacecraft science
    • /
    • 제6권5호
    • /
    • pp.409-426
    • /
    • 2019
  • The aim of the present work is to study the nonlinear behavior of the laminated composite plates under transverse sinusoidal loading using a new inverse trigonometric shear deformation theory, where geometric nonlinearity in the Von-Karman sense is taken into account. In the present theory, in-plane displacements use an inverse trigonometric shape function to account the effect of transverse shear deformation. The theory satisfies the traction free boundary conditions and violates the need of shear correction factor. The governing equations of equilibrium and boundary conditions associated with present theory are obtained by using the principle of minimum potential energy. These governing equations are solved by eight nodded serendipity element having five degree of freedom per node. A square laminated composite plate is considered for the geometrically linear and nonlinear formulation. The numerical results are obtained for central deflections, in-plane stresses and transverse shear stresses. Finite element Codes are developed using MATLAB. The present results are compared with previously published results. It is concluded that the geometrically linear and nonlinear response of laminated composite plates predicted by using the present inverse trigonometric shape function is in excellent agreement with previously published results.

철근콘크리트 부재의 핀칭 메커니즘에 대한 연구 (Pinching Mechanism of Reinforced Concrete Elements)

  • 김지현;이정윤
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2006년도 춘계학술발표회 논문집(I)
    • /
    • pp.482-485
    • /
    • 2006
  • The response of a reinforced concrete element under cyclic shear is characterized by the hysteretic loops of the shear stress-strain curves. These hysteretic loops can exhibit strength deterioration, stiffness degradation, and a pinched shape. Recent tests have shown that the orientation of steel grids in RC shear elements has a strong effect on the "pinching effect" in the post-yield hysteretic loops. When the steel grid was set at a 45 degree angle to the shear plane, there was no pinching effect and no strength deterioration. However, when the steel grid was set parallel to the shear plane, there was a severe pinching effect and severe strength deterioration with increasing shear strain magnitude. In this paper, two RC elements subjected to revered cyclic shear stresses are considered to study the effect of the steel grid orientation. The presence and absence of the pinching mechanism in the post-yield shear hysteretic loops is studied using the Rotating Angle Softened Truss Model (RA-STM) theory.

  • PDF

P1ane Strain Strength of Fine Sands

  • Yoon, Yeo-Won;Van, Impe W.F
    • 한국지반공학회지:지반
    • /
    • 제12권3호
    • /
    • pp.5-16
    • /
    • 1996
  • 실리카질 모래에 대한 많은 시험결과로부터 삼축압축시첩과 평면변형시험간의 강도관계를 밀도와 파괴시 유효평균주응력의 함수로 표현하였다. 또한 파괴시 평균주응력과 축차응력간의 응력비가 내부마찰각의 함수로 잘 규정되었으며 그 비는 내부마찰각의 증가에 따라 감소하였다. 또한 중간주응력을 최대주응력과 최소주응력으로써 표현하였으며 이론적인 파괴면의 각도와 평면변형시험에서 관찰된 파괴면의 각도가 비교적 잘 일치함이 확인되었다.

  • PDF

층간응력의 효과를 고려한 단일방향 900복합재 적층보의 진동감쇠 해석 (Vibraion Damping Analysis in $90^0$ Laminated Beam Considering the Effect of Interlaminar Stess)

  • 임종휘
    • 대한기계학회논문집A
    • /
    • 제24권5호
    • /
    • pp.1261-1270
    • /
    • 2000
  • This paper is concerned with the development of a general model for predicting material damping in laminates based on the strain energy method. In this model, the effect of interlaminar stress on damping is taken into accounts along with those of in-plane extension/compression and in-plane shear. The model was verified by carrying out the damping measurements on $90^0$ unidirectional composite beams varying length and thickness. The analytical predictions were favorably compared with the experimental data. The transverse shear($$\sigma$_{yz}$) appears to have a considerable influence on the damping behaviors in $90^0$ unidirectional polymer composites. However, the other interlaminar stresses($$\sigma$_{xz}$, $$\sigma$_z$) were shown to have little impact on vibration damping in $90^0$ laminated composite beam.

Multiaxial fatigue behaviors of open-rib to crossbeam joints in orthotropic bridge structures

  • Yang, Haibo;Qian, Hongliang;Wang, Ping;Dong, Pingsha;Berto, Fillipo
    • Steel and Composite Structures
    • /
    • 제42권6호
    • /
    • pp.843-853
    • /
    • 2022
  • The fatigue behavior of welded open rib-to crossbeam joints (ORCJ) in orthotropic bridge structures is investigated using a traction structural stress method. The fatigue behaviors of welded open rib-to crossbeam joints have been a subject of study for decades for ensuring operational safety and future design improvement. A mesh-insensitive combination of traction structural stresses in ORCJ was obtained considering the effect of in-plane shear stress and validated by fatigue test results. The proposed method is advantageous for predicting fatigue cracks that initiate from the crossbeam cutout and propagate along the crossbeam. The investigations carried out with the proposed approach reveal that the normal structural stress decreases with the propagation of fatigue cracks, while the ratio of shear stress to normal stress increases. The effect of shear structural stress is significant for the analysis of fatigue behavior of ORCJ in multiaxial stress states.

Numerical analysis of the receding contact problem of two bonded layers resting on an elastic half plane

  • Yaylaci, Murat;Terzi, Cemalettin;Avcar, Mehmet
    • Structural Engineering and Mechanics
    • /
    • 제72권6호
    • /
    • pp.775-783
    • /
    • 2019
  • The present study deals with the numerical analysis of the symmetric contact problem of two bonded layers resting on an elastic half plane compressed with a rigid punch. In this context, Finite Element Method (FEM) based software called ANSYS and ABAQUS are used. It is assumed that the elastic layers have different elastic constants and heights and the external load is applied to the upper elastic layer by means of a rigid stamp. The problem is solved under the assumptions that the contact between two elastic layers, and between the rigid stamp are frictionless, the effect of gravity force is neglected. To validate the constructed model and obtained results a comparison is performed with the analytical results in literature. The numerical results for normal stresses and shear stresses are obtained for various parameters of load, material and geometry and are tabulated and illustrated.

Influence of polled direction on the stress distribution in piezoelectric materials

  • Ilhan, Nihat;Koc, Nagihan
    • Structural Engineering and Mechanics
    • /
    • 제54권5호
    • /
    • pp.955-971
    • /
    • 2015
  • In this paper, the influence of the polled direction of piezoelectric materials on the stress distribution is studied under time-harmonic dynamical load (time-harmonic Lamb's problem). The system considered in this study consists of piezoelectric covering layer and piezoelectric half-plane, and the harmonic dynamical load acts on the free face of the covering layer. The investigations are carried out by utilizing the exact equations of motion and relations of the linear theory of electro-elasticity. The plane-strain state is considered. It is assumed that the perfect contact conditions between the covering layer and half-plane are satisfied. The boundary value problems under consideration are solved by employing Fourier exponential transformation techniques with respect to coordinates directed along the interface line. Numerical results on the influence of the polled direction of the piezoelectric materials such as PZT-5A, PZT-5H, PZT-4 and PZT-7A on the normal stresses, shear stresses and electric potential acting on the interface plane are presented and discussed. As a result of the analyses, it is established that the polled directions of the piezoelectric materials play an important role on the values of the studied stresses and electric potential.

Stress analysis of a postbuckled laminated composite plate

  • Chai, Gin-Boay;Chou, Siaw Meng;Ho, Chee-Leong
    • Structural Engineering and Mechanics
    • /
    • 제7권4호
    • /
    • pp.377-386
    • /
    • 1999
  • The stress distribution in a symmetrically laminated composite plate subjected to in-plane compression are evaluated using finite element analysis. Six different finite element models are created for the study of stresses in the plate after buckling. Two finite element modelling approaches are adopted to obtain the stress distribution. The first approach starts with a full model of shell elements from which sub-models of solid elements are spin-off The second approach adopts a full model of solid elements at the beginning from which sub-models of solid elements are created. All sub-models have either 1-element thickness or 14-element thickness. Both techniques show high interlaminar direct and shear stresses at the free edges. The study also provides vital information of the distribution of all components of stresses along the unloaded edges in length direction and also in the thickness direction of the plate.

The length of plastic hinge area in the flanged reinforced concrete shear walls subjected to earthquake ground motions

  • Bafti, Farzad Ghaderi;Mortezaei, Alireza;Kheyroddin, Ali
    • Structural Engineering and Mechanics
    • /
    • 제69권6호
    • /
    • pp.651-665
    • /
    • 2019
  • Past earthquakes have shown that appropriately designed and detailed buildings with shear walls have great performance such a way that a considerable portion of inelastic energy dissipation occurs in these structural elements. A plastic hinge is fundamentally an energy diminishing means which decrease seismic input energy through the inelastic deformation. Plastic hinge development in a RC shear wall in the areas which have plastic behavior depends on the ground motions characteristics as well as shear wall details. One of the most generally used forms of structural walls is flanged RC wall. Because of the flanges, these types of shear walls have large in-plane and out-of-plane stiffness and develop high shear stresses. Hence, the purpose of this paper is to evaluate the main characteristics of these structural components and provide a more comprehensive expression of plastic hinge length in the application of performance-based seismic design method and promote the development of seismic design codes for shear walls. In this regard, the effects of axial load level, wall height, wall web and flange length, as well as various features of earthquakes, are examined numerically by finite element methods and the outcomes are compared with consistent experimental data. Based on the results, a new expression is developed which can be utilized to determine the length of plastic hinge area in the flanged RC shear walls.