• 제목/요약/키워드: in-plane shear

검색결과 940건 처리시간 0.033초

면내2축인장력을 받는 철근콘크리트슬래브의 펀칭전단강도 (Punching Shear Strength of Reinforced Concrete Slabs Subjected to Biaxial In-plane Tension)

  • 모귀석;김대중;김우
    • 콘크리트학회지
    • /
    • 제2권3호
    • /
    • pp.73-80
    • /
    • 1990
  • 본 연수는 철근콘크리트 슬래브에서, 슬래브의 접선방향으로 작용하는 면내인장력이 슬래브의 펀칭거동에 미치는 영향을 연구하고자 하는 것이다. 주요변수들은 슬래브으 전단지간(shear span)과 면내인장력의 크기이다. 본 연구에서 얻어진 결과들을 이미 발표된 논문들의 결과와 비교하고, 또 현행의 설계규준인 ACI 349-85의 해당규준의 타당성을 검토하여 새로운 식을 제안했다.

Effect of fibers and welded-wire reinforcements on the diaphragm behavior of composite deck slabs

  • Altoubat, Salah;Ousmane, Hisseine;Barakat, Samer
    • Steel and Composite Structures
    • /
    • 제19권1호
    • /
    • pp.153-171
    • /
    • 2015
  • Twelve large-scale composite deck slabs were instrumented and tested in a cantilever diaphragm configuration to assess the effect of fibers and welded wire mesh (WWM) on the in-plane shear capacity of composite deck slabs. The slabs were constructed with reentrant decking profile and reinforced with different types and dosages of secondary reinforcements: Conventional welded wire mesh (A142 and A98); synthetic macro-fibers (dosages of $3kg/m^3$ and $5.3kg/m^3$); and hooked-end steel fibers with a dosage of $15kg/m^3$. The deck orientation relative to the main beam (strong and weak) was also considered in this study. Fibers and WWM were found efficient in distributing the applied load to the whole matrix, inducing multiple cracking, thereby enhancing the strength and ductility of composite deck slabs. The test results indicate that fibers increased the slab's ultimate in-plane shear capacity by up to 29% and 50% in the strong and weak directions, respectively. WWM increased the ultimate in-plane shear capacity by up to 19% in the strong direction and 9% in the weak direction. The results suggest that discrete fibers can provide comparable diaphragm behavior as that with the conventional WWM.

하이브리드 복합재료의 전단 물성치 측정에 관한 연구 (A study of the shear properties for hybrid composites)

  • 백운철;조맹효;황재석
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2002년도 추계학술발표대회 논문집
    • /
    • pp.96-99
    • /
    • 2002
  • In order to determine the in-plane shear properties of unidirectional carbon fiber reinforced aluminum laminate composites, a new Iosipescu shear test fixture was developed, by using a fixture undergoing tensile force for the specimen edge to be subjected to compressive loads assumption, under plane stress. Also, to compare the results, Iosipescu shear test method by the modified Wyoming fixture and the off-axis tensile test were performed to determine the shear properties. Off-axis tension test was performed by using new oblique-shaped tabs proposed by Sun and Chung. [5] The oblique tabs reduced remarkably end-constraint effects of off-axis specimens with a aspect ratio of about eight. It is observed through the experimental results show that there is no significant difference between off-axis test results and those of Iosipescu shear test.

  • PDF

Condition assessment of steel shear walls with tapered links under various loadings

  • He, Liusheng;Kurata, Masahiro;Nakashima, Masayoshi
    • Earthquakes and Structures
    • /
    • 제9권4호
    • /
    • pp.767-788
    • /
    • 2015
  • A steel shear wall with double-tapered links and in-plane reference was developed for assisting the assessment of the structural condition of a building after an earthquake while maintaining the original role of the wall as a passive damper device. The double-tapered link subjected to in-plane shear deformation is designed to deform torsionally after the onset of local buckling and works as an indicator of the maximum shear deformation sustained by the shear wall during an earthquake. This paper first examines the effectiveness of double-tapered links in the assessment of the structural condition under various types of loading. A design procedure using a baseline incremental two-cycle loading protocol is verified numerically and experimentally. Meanwhile, in-plane reference links are introduced to double-tapered links and greatly enhance objectivity in the inspection of notable torsional deformation with the naked eye. Finally, a double-layer system, which consists of a layer with double-tapered links and a layer with rectangular links made of low-yield-point steel, is tested to demonstrate the feasibility of realizing both structural condition assessment and enhanced energy dissipation.

P1ane Strain Strength of Fine Sands

  • Yoon, Yeo-Won;Van, Impe W.F
    • 한국지반공학회지:지반
    • /
    • 제12권3호
    • /
    • pp.5-16
    • /
    • 1996
  • 실리카질 모래에 대한 많은 시험결과로부터 삼축압축시첩과 평면변형시험간의 강도관계를 밀도와 파괴시 유효평균주응력의 함수로 표현하였다. 또한 파괴시 평균주응력과 축차응력간의 응력비가 내부마찰각의 함수로 잘 규정되었으며 그 비는 내부마찰각의 증가에 따라 감소하였다. 또한 중간주응력을 최대주응력과 최소주응력으로써 표현하였으며 이론적인 파괴면의 각도와 평면변형시험에서 관찰된 파괴면의 각도가 비교적 잘 일치함이 확인되었다.

  • PDF

고장력 강판의 점용접부에서 면내 굽힘 모멘트가 피로특성 및 균열 성장 거동에 미치는 영향에 관한 연구(I) - 실험적 검토 - (A Study on the Effect of Fatigue and Crack Propagation Behavior in Spot Weld of High Strength Steel( I ) - Experimental Examination -)

  • 성기찬;장경복;정진우;김기순;강성수
    • Journal of Welding and Joining
    • /
    • 제19권1호
    • /
    • pp.112-117
    • /
    • 2001
  • The factor affecting on the fatigue strength of spot welded specimen have been studied. To analyze and predict crack initiation position and propagation directions on the spot welded area are very important for strength design of the automobile body structure. In fact, there are a various of loads in running automobile but, it is impossible to replay like an actual conditions in the laboratory. So, in this study tensile-shear type and in-plane bending type specimens were used in fatigue test and includes an analysis of fatigue crack initiation position and propagation directions about earth specimens. The results obtained in the present study are summarized as follows: 1. In tensile-shear type fatigue test, the region of fatigue crack initiation position was affected by out-of-plane bending deformation due to bending angle. 2 In in-plane bending type fatigue test, the behavior of fatigue crack initiation position and propagation derections due to angle between upper plate and lower plate was dominated by magnitude of in-plane bending moment.

  • PDF

Hollow core 슬래브 간 접합부의 전단저항성능 평가 (Shear Performance Evaluation of the Joint between Hollow Core Slabs)

  • 홍건호;백종삼;박홍근
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권4호
    • /
    • pp.94-101
    • /
    • 2010
  • 최근 건설공사의 공기단축을 위하여 프리캐스트 콘크리트(Precast Concrete)에 대한 관심이 점차 증가하는 추세이다. 본 연구에서는 프리캐스트 콘크리트 중 내부에 중공을 설치하여 중량을 감소시킨 할로우코어 슬래브 간의 접합부 전단성능 평가에 대한 실험적 연구를 수행하였다. 실험의 주요 변수는 할로우코어 슬래브 상부의 토핑콘크리트의 두께와 와이어메쉬의 배근유무이며, 총 8개의 슬래브간 접합부 실험체 중 4개의 면내전단실험과 4개의 면외방향 전단실험을 수행하였다. 실험의 결과는 균열하중, 파괴하중, 파괴양상, 강성 및 연성도의 측면에서 분석하였으며, 실험결과를 설계하중과 비교 검토함으로써 최적의 디테일을 개발할 수 있는 실험적 근거를 제공하도록 하였다. 실험결과, 슬래브 간 접합부에 무수축 모르타르를 타설한 경우에는 토핑두께 30mm의 보통 콘크리트를 사용한 것과 유사한 구조성능을 발현할 수 있는 것으로 평가되었으며, 와이어메쉬의 보강효과는 내력 및 강성보다는 연성의 증가에 크게 기여하는 것으로 나타났다. 또한, 토핑콘크리트의 두께에 따른 설계하중과의 비교를 통하여 적절한 디테일 설계를 할 수 있는 기초적 자료를 제공하였다.

동일 평면상에서 연성된 Mindlin 판 구조물의 에너지흐름유한요소해석 (Energy Flow Finite Element Analysis(EFFEA) of Coplanar Coupled Mindlin Plates)

  • 박영호
    • 대한조선학회논문집
    • /
    • 제53권4호
    • /
    • pp.307-314
    • /
    • 2016
  • Energy flow analysis(EFA) is a representative method that can predict the statistical energetics of structures at high frequencies. Generally, as the frequency increases, the shear distortion and rotatory inertia effects in the out-of-plane motion of beams or plates become important. Therefore, to predict the out-of-plane energetics of coupled structures in the high frequency range, the energy flow analyses of Timoshenko beam and Mindlin plate are required. Unlike the energy flow model of Kirchhoff plate, the energy flow model of Mindlin plate is composed of three kinds of energy governing equations(out-of-plane shear wave, bending dominant flexural wave, and shear dominant flexural wave). This paper performed the energy flow finite element analysis(EFFEA) of coplanar coupled Mindlin plates. For EFFEA of coplanar coupled Mindlin plates, the energy flow finite element formulation of out-of-plane energetics in the Mindlin plate was performed. The general EFFEA program was implemented by MATLAB® language. For the verification of EFFEA of Mindlin plate, the various numerical applications were done successfully.

Strength of connection fixed by TOBs considering out-of-plane tube wall deformation-Part 1: Tests and numerical studies

  • Wulan, Tuoya;Wang, Peijun;Xia, Chengxin;Liu, Xinyu;Liu, Mei;Liu, Fangzhou;Zhao, Ou;Zhang, Lulu
    • Steel and Composite Structures
    • /
    • 제42권1호
    • /
    • pp.49-57
    • /
    • 2022
  • This paper presents a study on the behavior of a bolted T-stub to square tube connection using Thread-fixed One-side Bolts (TOBs) through tests and numerical simulations. It outlines a research work of four connections with focus on the failure modes and strengths of the connection under tensile load. It was observed that the thread anchor failure caused by shear failure of hole threads controlled the final failure of the connection in the tests. Meanwhile, the out-of-plane deformation of tube wall resulted in the contact separation between hole threads and bolt threads, which in turn reduced the shear strength of hole threads. Finite element models (FEMs) allowing for the configuration details of the TOBs fixed connection are then developed and compared with the test results. Subsequently, the failure mechanism of hole threads and stress distribution of each component are analyzed based on FEM results. It was concluded that the ultimate strength of connection was not only concerned with the shear strength of hole threads, but also was influenced by the plastic out-of-plane deformation of tube wall. These studies lay a foundation for the establishment of suitable design methods of this type of connection.

New Evaluation and Test of Sidewall's Rotational Stiffness of Radial Tire

  • Kim Young-Woo;Kim Yong-Sung
    • Journal of Mechanical Science and Technology
    • /
    • 제20권6호
    • /
    • pp.748-758
    • /
    • 2006
  • In this paper, we have revisited the estimation of the rotational stiffness of sidewall of radial tire and have suggested a new method for evaluation of the rotational stiffness. Since thicknesses, and volume fractions of the constituents of sidewall are varied depending on radial position, the equivalent shear modulus of the sidewall also depends on radial position. For the estimation of rotational stiffness of sidewall's rubber, we have divided its cross-section into sufficient numbers of small parts and have calculated the equivalent shear modulus of each part of sidewall. Using the shear moduli of divided parts, we have obtained the rotational stiffness by employing in-plane shear deformation theory. This method is expected to be a useful tool in tire design since it relates such basic variables to the global stillness of tire. Applying the calculation method to a radial tire of P205/60R15, we have compared its rotational stiffness with experimental one.