• 제목/요약/키워드: in-plane load function

검색결과 81건 처리시간 0.021초

w 변환법에 의한 전기 - 유압식 조속기를 가진 박용디젤기관의 속도제어 (The Speed Control of a Marine Diesel Engine with Electro Hydraulic Governor by using W Transformation Method)

  • 강창남;박진길
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제21권2호
    • /
    • pp.195-205
    • /
    • 1997
  • The propulsion marine diesel engine have been widely applied with a mechanical- hydraulic governor to control the ship speed for long time. But it was recently very difficult for the mechani¬cal - hydraulic governor to control the speed of engine under the condition of low speed and low load because of jiggling by rough fluctuation of rotating torque and hunting by dead time of Desiel engnie The performance improvement of mechanical - hydraulic governor is required to solve these problems of control system. The electro - hydraulic governor using PID algorithm is provided to compensate the faults of mechanical- hydraulic governor. In this paper, in order to analyze the ship speed control system, the transfer function was converted from the z tansformation to w transformation. The influence of dead time changing by engine speed which induces hunting phenomena was investigated by Nichols chart of w plane. As a method of performance improvement of mechanical hydraulic governor, a Eletro - hydraulic governor shows that fine control results can be obtained through optimal parameter tuning of PID

  • PDF

Porosity effects on post-buckling behavior of geometrically imperfect metal foam doubly-curved shells with stiffeners

  • Mirjavadi, Seyed Sajad;Forsat, Masoud;Yahya, Yahya Zakariya;Barati, Mohammad Reza;Jayasimha, Anirudh Narasimamurthy;Hamouda, AMS
    • Structural Engineering and Mechanics
    • /
    • 제75권6호
    • /
    • pp.701-711
    • /
    • 2020
  • This papers studies nonlinear stability and post-buckling behaviors of geometrically imperfect metal foam doubly-curved shells with eccentrically stiffeners resting on elastic foundation. Metal foam is considered as porous material with uniform and non-uniform models. The doubly-curved porous shell is subjected to in-plane compressive loads as well as a transverse pressure leading to post-critical stability in nonlinear regime. The nonlinear governing equations are analytically solved with the help of Airy stress function to obtain the post-buckling load-deflection curves of the geometrically imperfect metal foam doubly-curved shell. Obtained results indicate the significance of porosity distribution, geometrical imperfection, foundation factors, stiffeners and geometrical parameters on post-buckling characteristics of porous doubly-curved shells.

외부가압 공기윤활 저어널베어링의 안정성에 관한 해석 (An Analysis of the Stability of Externally Pressurized Air-Lubricated Journal Bearings)

  • 임종락;김경웅;김금모
    • Tribology and Lubricants
    • /
    • 제6권1호
    • /
    • pp.74-81
    • /
    • 1990
  • The threshold of instability for a rigid rotor supported in externally pressurized airlubricated circular or non-circular journal bearings of finite length is theoretically analyzed. The analysis is performed for a bearing having one feeding plane, no recess volume, which is assumed to be a line source, and is based on a first order perturbation of journal center motion about steady state position. And then linearized system dynamic analysis is carried out. Numerical results are given, showing the threshold of instability as a function of supply pressure ratio, feeding parameter and load. It is shown that the region that 2-lobe bearing is more stable than circular bearing exists and whirl ratio of 2-lobe bearing is less than that of the other types of bearing.

고주파 직렬공진형 DC-DC Converter의 특성 해석 (The Analysis of a High Frequency Series Resonant DC-DC Converter)

  • 이윤종;김철진
    • 대한전기학회논문지
    • /
    • 제39권9호
    • /
    • pp.934-943
    • /
    • 1990
  • There are no turn-on losses in the series Resonant Converter which operates above the resonance frequency, and the commutation stress on the switched component is low. For a given Series Resonant Converter with specified load resistance, the output voltage is a function of the operation frequency. This paper describes the static and dynamic characteristic analysis of the Series Resonant DC to DC Converter, which is operating above the resonant frequency, with frequency control. For the analysis method, state plane technique is adopted, and the circuit operation is defined from normalized switching frequency, Fsn. Under this condition, circuit performance is analyzed ideally. The validity of the proposed analysis is verified by comparing with experimental results, the stability of the converter is confirmed against small variations around the operating point by conventional frequency domain analysis, and the stress quantity added to switch component is shown.

  • PDF

SDN 환경에서 효율적 Flow 전송을 위한 전송 지연 평가 기반 부하 분산 기법 연구 (Transmission Delay Estimation-based Forwarding Strategy for Load Distribution in Software-Defined Network)

  • 김도현;홍충선
    • 정보과학회 컴퓨팅의 실제 논문지
    • /
    • 제23권5호
    • /
    • pp.310-315
    • /
    • 2017
  • Software-Defined Network의 등장은 하드웨어적인 네트워크 기능들을 소프트웨어적인 형태의 모듈로 Controller에 보다 유연하게 적용시키도록 함으로써 전통적인 네트워크의 구조를 변화시키고 있다. 이러한 환경 속에서 최근 네트워크 트래픽에 대한 Quality of Service 및 자원관리와 같은 다양한 관점에서의 네트워크 관리정책에 대한 연구개발이 진행되고 있고, 이러한 관리정책을 뒷받침 할 수 있는 네트워크 모니터링에 대한 기법들 또한 제시되어 왔다. 이에 본 논문에서는 기계 학습 기법인 Naive Bayesian Classification을 통하여 Flow를 분류한 후, 전송 지연 측정 모듈을 통하여 효율적인 전송경로를 선정하는 기법을 제안한다. 이는 다양한 대역폭을 갖는 여러 경로들로 이루어진 네트워크상에서 효율적인 경로 분배 역할을 할 수 있고, 부하를 분산시킴으로써 보다 원활한 네트워크 환경 및 서비스 품질을 제공할 수 있다.

Bi-axial and shear buckling of laminated composite rhombic hypar shells

  • Chaubey, Abhay K.;Raj, Shubham;Tiwari, Pratik;Kumar, Ajay;Chakrabarti, Anupam;Pathak, K.K.
    • Structural Engineering and Mechanics
    • /
    • 제74권2호
    • /
    • pp.227-241
    • /
    • 2020
  • The bi-axial and shear buckling behavior of laminated hypar shells having rhombic planforms are studied for various boundary conditions using the present mathematical model. In the present mathematical model, the variation of transverse shear stresses is represented by a second-order function across the thickness and the cross curvature effect in hypar shells is also included via strain relations. The transverse shear stresses free condition at the shell top and bottom surfaces are also satisfied. In this mathematical model having a realistic second-order distribution of transverse shear strains across the thickness of the shell requires unknown parameters only at the reference plane. For generality in the present analysis, nine nodes curved isoparametric element is used. So far, there exists no solution for the bi-axial and shear buckling problem of laminated composite rhombic (skew) hypar shells. As no result is available for the present problem, the present model is compared with suitable published results (experimental, FEM, analytical and 3D elasticity) and then it is extended to analyze bi-axial and shear buckling of laminated composite rhombic hypar shells. A C0 finite element (FE) coding in FORTRAN is developed to generate many new results for different boundary conditions, skew angles, lamination schemes, etc. It is seen that the dimensionless buckling load of rhombic hypar increases with an increase in c/a ratio (curvature). Between symmetric and anti-symmetric laminations, the symmetric laminates have a relatively higher value of dimensionless buckling load. The dimensionless buckling load of the hypar shell increases with an increase in skew angle.

과개교합과 치열궁부조화 및 수직고경 감소를 가진 환자의 전악수복증례 (Full mouth rehabilitation in patient with deep bite, inter-dental arch discrepancy and loss of vertical dimension: a case report)

  • 송한솔;이예진;고경호;허윤혁;조리라;박찬진
    • 구강회복응용과학지
    • /
    • 제37권3호
    • /
    • pp.157-170
    • /
    • 2021
  • 구치부 지지 상실과 같은 치아 결손은 불안정한 교합 관계를 야기하고 중심위나 습관적 폐구위에서 하악의 전방 활주 시 전치부에 과도한 하중을 초래하기 쉬워 교합평면이 붕괴되며 교합수직고경의 감소와 악관절 기능 장애까지 나타날 수 있다. 치열궁 크기의 부조화는 전치부와 구치부에서 수직수평적인 관계의 부조화를 유발하며 이로써 나타나는 전치부의 과개교합과 구치부의 가위교합은 불안정한 교합접촉과 충분하지 못한 교합접촉면적을 야기한다. 본 증례는 이와 같은 문제들이 복합적으로 나타나는 환자로 임시보철물을 이용하여 교합수직고경 증가 및 새롭게 설정한 교합평면에 대한 적응을 평가하였고, 교차 모형부착을 이용하여 최종보철물에 반영하여 수복하였다. 그 결과 안정적인 교합과 조화로운 수직수평피개 및 교합평면을 형성하여 기능적, 심미적으로 만족스러운 결과를 얻어 이를 보고하고자 한다.

Hydrocode를 이용한 격납구조의 대형 민항기 충돌해석 (Analysis of Containment Building Subjected to a Large Aircraft Impact using a Hydrocode)

  • 신상섭;박대효
    • 대한토목학회논문집
    • /
    • 제31권5A호
    • /
    • pp.369-378
    • /
    • 2011
  • 본 논문은 RC(Reinforced Concrete), SC(Steel-Plate Concrete) 격납구조에 대한 대형 민항기 충돌에 관한 응답해석을 Hydrocode인 Autodyn-3D를 통해 수행하였다. 이전에 연구된 대부분의 항공기 충돌 해석에서의 충격 하중은 국부적인 부분(동체면적의 약 2배)에 대해 Riera의 충격하중함수를 적용하는 방법을 이용하여왔다. 하지만, 본 논문에서는 실제 Boeing 767과 유사한 모델을 구현하여 대상 구조체에 직접 충돌 시켜 나타나는 현상을 비교 분석 하였으며, 항공기 모델은 강성벽(Rigid Target)에 대해 항공기를 충돌 시켰을 시 발생되는 충돌하중이력곡선과, Riera 함수를 이용한 충돌하중이력곡선과의 비교를 통하여 검증하였다. 항공기 충돌 시, SC 격납구조에 대한 충돌저항능력 및 응답, 안전성 효과를 평가 하기 위해 무근 콘크리트(Plain Concrete:PC), 철근 콘크리트(Reinforced Concrete:RC), 철근 콘크리트와 완전 부착된 내부 Liner Plate(CLP:Containment Liner Plate), 그리고 SC 격납구조에 대한 해석을 수행하였다. 따라서 항공기 충돌과 같은 비정상충격하중이 RC구조와 SC구조에 가해질 경우에 대한 거동 예측이 가능하며, 보수적인 안전성이 요구되는 RC 원전 격납건물에 SC구조를 적용하면 상대적인 안전성 증대 효과를 기대 할 수 있을 것으로 보여진다.

착지 높이와 지면 형태가 하지 관절에 미치는 영향 (The Effect on the Lower Limbs Joint as the Landing Height and Floor Pattern)

  • 김은경
    • 한국운동역학회지
    • /
    • 제21권4호
    • /
    • pp.437-447
    • /
    • 2011
  • In this study, the lower limbs joints were analyzed for features based on the biomechanical characteristics of landing techniques according to height and landing on the ground type (flats and downhill). In order to achieve the objectives of the study, changes were analyzed in detail contents such as the height and form of the first landing on the ground at different angles of joints, torso and legs, torso and legs of the difference in the range of angular motion of the joint, the maximum angular difference between joints, the lower limbs joints difference between the maximum moment and the difference between COM changes. The subjects in this study do not last six months did not experience joint injuries 10 males in 20 aged were tested. Experimental tools to analyze were the recording and video equipment. Samsung's SCH-650A model camera was used six units, and the 2 GRF-based AMTI were used BP400800 model. 6-unit-camera synchronized with LED (photo cell) and Line Lock system were used. the output from the camera and the ground reaction force based on the data to synchronize A/D Syc. box was used. To calculate the coordinates of three-dimensional space, $1m{\times}3m{\times}2m$ (X, Y, Z axis) to the size of the control points attached to the framework of 36 markers were used, and 29 where the body was taken by attaching a marker to the surface. Two kinds of land condition, 40cm and 60cm in height, and ground conditions in the form of two kinds of flat and downhill slopes ($10^{\circ}$) of the landing operation was performed and each subject's 3 mean two-way RM ANOVA in SPSS 18.0 was used and this time, all the significant level was set at a=.05. Consequently, analyzing the landing technique as land form and land on the ground, the changes of external environmental factors, and the lower limbs joints' function in the evaluation were significantly different from the slopes. Landing of the slop plane were more load on the joints than landing of plane. Especially, knee extensor moment compared to the two kinds of landing, slopes plane were approximately two times higher than flat plane, and it was statistical significance. Most of all not so much range of motion and angular velocity of the shock to reduce stress was important. In the further research, front landing as well as various direction of motion of kinetic, kinetic factors and EMG variables on lower limbs joints of the study in terms of injury-prevention-approach is going to be needed.

Dynamic analysis of porous functionally graded layered deep beams with viscoelastic core

  • Assie, Amr;Akbas, Seref D.;Kabeel, Abdallah M.;Abdelrahman, Alaa A.;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제43권1호
    • /
    • pp.79-90
    • /
    • 2022
  • In this study, the dynamic behavior of functionally graded layered deep beams with viscoelastic core is investigated including the porosity effect. The material properties of functionally graded layers are assumed to vary continuously through thickness direction according to the power-law function. To investigate porosity effect in functionally graded layers, three different distribution models are considered. The viscoelastically cored deep beam is exposed to harmonic sinusoidal load. The composite beam is modeled based on plane stress assumption. The dynamic equations of motion of the composite beam are derived based on the Hamilton principle. Within the framework of the finite element method (FEM), 2D twelve -node plane element is exploited to discretize the space domain. The discretized finite element model is solved using the Newmark average acceleration technique. The validity of the developed procedure is demonstrated by comparing the obtained results and good agreement is detected. Parametric studies are conducted to demonstrate the applicability of the developed methodology to study and analyze the dynamic response of viscoelastically cored porous functionally graded deep beams. Effects of viscoelastic parameter, porosity parameter, graduation index on the dynamic behavior of porous functionally graded deep beams with viscoelastic core are investigated and discussed. Material damping and porosity have a significant effect on the forced vibration response under harmonic excitation force. Increasing the material viscosity parameters results in decreasing the vibrational amplitudes and increasing the vibration time period due to increasing damping effect. Obtained results are supportive for the design and manufacturing of such type of composite beam structures.