• 제목/요약/키워드: in-plane load

검색결과 929건 처리시간 0.031초

평면변형 단조에서의 예비성형체 설계에 관한 연구 (A Study on Preform Design in Plane-Strain Forging)

  • 이종헌;강건;배춘익
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권5호
    • /
    • pp.678-685
    • /
    • 1999
  • A UBET program is developed for determining flash the optimum sizes of preform and initial billet in plane-strain closed-die forging. The program consists of forward and backward tracing processes. In the forward program, flash, die filling and forging load are predicted. In backward tracing process the optimum dimensions of initial billet and preform are determined from the final-shape data based on flash design. Experiments are carried out with pure plasticine billets ar room temperature. The theoretical predictions of forging load and flow pattern are in good agree-ment with the experimental results.

  • PDF

Inelastic lateral-distortional buckling of continuously restrained continuous beams

  • Lee, Dong-Sik
    • Steel and Composite Structures
    • /
    • 제5권4호
    • /
    • pp.305-326
    • /
    • 2005
  • The inelastic buckling behaviour of continuously restrained two and three-span continuous beams subjected to concentrated loads and uniformly distributed loads are studied in this paper. The restraint type considered in this paper is fully restrained against translation and elastic twist applied at the top flange. These types of restraints are most likely experienced in industrial structures, for example steel-concrete composite beams and half through girders. The buckling analysis of continuous beam consists of two parts, firstly the moment and shear distribution along the member are determined by employing force method and the information is then used for an out-of-plane buckling analysis. The finite element method is incorporated with so-called simplified and the polynomial pattern of residual stress. Owing to the inelastic response of the steel, both the in-plane and out-of-plane analysis, which is treated as being uncoupled, extend into the nonlinear range. This paper presents the results of inelastic lateral-torsional and lateral-distortional buckling load and finally conclusions are drawn regarding the web distortion.

국부적 굽힘붕괴를 수반하는 평면프레임의 대변형 해석 (Large Deflection Analysis of a Plane Frame with Local Bending Collapse)

  • 김천욱;원종진;강명훈
    • 대한기계학회논문집
    • /
    • 제19권8호
    • /
    • pp.1889-1900
    • /
    • 1995
  • In this study, a large deflection analysis of a plane frame composed of a thin-walled tube in investigated. When bent, a thin-walled tube is usually controlled by local buckling and subsequent bending collapse of the section. So load resistance reaches the yield level in a thin-walled rectangular tube. This relationship can be divided into three regimes : elastic, post-buckling and crippling. In this paper, this relationship is theoretically presented to be capable of describing nonlinearities and a stiffness matrix is derived by introducing a compound beam-spring element. A numerical analysis uses a constant incremental energy method and the solution is obtained by modifying stiffness matrix at elastic/inelastic stage. This analytical results, load-deflection paths show a good agreement with the test results.

평면변형 및 축대칭 단조에서 최적 속도장에 관한연구 (A Study on the Optimum Velocity Fields in Plane-strain and Axisymmetric Forging)

  • 김진욱
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제23권3호
    • /
    • pp.379-388
    • /
    • 1999
  • Au upper bound elemental technique(UBET) program has been developed to analyze forging load die-cavity filling and optimum kinematically admissible velocity fields for flashless forging. The simulation for flashless forgings are applied plane-strain and axisymmetric closed-die forging with rib-web type cavity. The kinematically admissible velocity fields for inverse triangular and inverse trapezoidal elements are used to analyze flashless forging,. Experiments have been carried out with pure plasticine billets at room temperature. Theoretical predictions of the forging load in plane-strain and axisymmetric forging are in good agreement with experimental results.

  • PDF

Buckling analysis of sandwich beam rested on elastic foundation and subjected to varying axial in-plane loads

  • Hamed, Mostafa A.;Mohamed, Salwa A;Eltaher, Mohamed A.
    • Steel and Composite Structures
    • /
    • 제34권1호
    • /
    • pp.75-89
    • /
    • 2020
  • The current paper illustrates the effect of in-plane varying compressive force on critical buckling loads and buckling modes of sandwich composite laminated beam rested on elastic foundation. To generalize a proposed model, unified higher order shear deformation beam theories are exploited through analysis; those satisfy the parabolic variation of shear across the thickness. Therefore, there is no need for shear correction factor. Winkler and Pasternak elastic foundations are presented to consider the effect of any elastic medium surrounding beam structure. The Hamilton's principle is proposed to derive the equilibrium equations of unified sandwich composite laminated beams. Differential quadrature numerical method (DQNM) is used to discretize the differential equilibrium equations in spatial direction. After that, eigenvalue problem is solved to obtain the buckling loads and associated mode shapes. The proposed model is validated with previous published works and good matching is observed. The numerical results are carried out to show effects of axial load functions, lamination thicknesses, orthotropy and elastic foundation constants on the buckling loads and mode shapes of sandwich composite beam. This model is important in designing of aircrafts and ships when non-uniform compressive load and shear loading is dominated.

The dynamic response of the FGM coated half-plane with hysteretic damping under time harmonic loading

  • Xiao-Min Wang;Liao-Liang Ke;Yue-Sheng Wang
    • Structural Engineering and Mechanics
    • /
    • 제87권1호
    • /
    • pp.95-106
    • /
    • 2023
  • This paper investigates the dynamic response of a functionally graded material (FGM) coated half-plane excited by distributed time harmonic loading. Three types of typical distributed surface loads, including uniform load, Hertz load, and square-root singular load, are considered. The mass density and elastic modulus of the FGM coating are supposed to be described by the exponential function. The material damping is modelled by a linearly hysteretic damping which is expressed by a complex modulus in the time harmonic motion. Using Fourier integral transform technique and numerical integral method, the effects of the excitation frequency, gradient index, damping, and load type on the dynamic stresses and displacements are discussed.

축방향 관통균열이 존재하는 곡관의 한계 하중 및 공학적 J-적분 예측 (Limit Load and Approximate J-Integral Estimates for Axial-Through Wall Cracked Pipe Bend)

  • 송태광;김종성;진태은;김윤재
    • 대한기계학회논문집A
    • /
    • 제31권5호
    • /
    • pp.562-569
    • /
    • 2007
  • This paper presents plastic limit loads and approximate J estimates for axial through-wall cracked pipe bends under internal pressure and in-plane bending. Geometric variables associated with a crack and pipe bend are systematically varied, and three possible crack locations (intrados, extrados and crown) in pipe bends are considered. Based on small strain finite element limit analyses using elastic-perfectly plastic materials, effect of bend and crack geometries on plastic limit loads for axial through-wall cracked pipe bends under internal pressure and in-plane bending are quantified, and closed-form limit solutions are given. Based on proposed limit load solutions, a J estimation scheme for axial through-wall cracked pipe bends under internal pressure and in-plane bending is proposed based on reference stress approach.

평지붕 설치 태양광시스템의 표면형태 조사·분석 (Investigation and Analysis on the Surface Morphology of Roof-Top Photovoltaic System)

  • 이응직
    • 한국태양에너지학회 논문집
    • /
    • 제36권4호
    • /
    • pp.57-65
    • /
    • 2016
  • Domestic photovoltaic system for roof-top is installed towards the south at an angle of 20 to 35 degrees and the shape of PV array is divided into two kinds; a plane shape and a curved shape. This paper aims to understand an actual condition of PV facility and strengths and weaknesses of support structure production and installation and to consider the best PV surface shape by analyzing theoretical logics of these two surface shapes and architectural perspective-based realistic case studies. This study targeted 98 facilities including common houses, public institutions and education institutions. In common houses, all of 59 PV facilities have a plane surface. In public institutions, 7 of 15 PV facilities have a curved array surface and 8 PV facilities have a plane surface. In education institutions, also, 14 of 24 PV facilities have a plane array surface and 10 PV facilities have a curved surface. Most of 98 facilities have a flat roof supporting shape. However, it was found that the curved shape wasn't positive for PV generation due to the change of radial density and it was at least 10 % more expensive to produce its structure. Also, domestic general large single-plate PV facilities have problems of harmony with buildings and wind load. Therefore, it is considered that for fixed-type roof-top PV, a plane PV array shape is good for optimum generation and economic efficiency and a parallel array structure on the roof surface is favorable to wind load and snow load without being a hindrance to the building facade.

EDISON Co-rotational Plane beam-Dynamic tip load를 이용한 가진주파수 변화에 따른 외팔보의 자유단 진동 연구

  • 박철우;주현식
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.246-250
    • /
    • 2015
  • In this paper, Timoshenko and Euler-Bernoulli beam theories(EB-beam) are used, and Fast Fourier Transformation(FFT) analysis is then employed to extract their natural frequencies using both analytical approach and Co-rotational plane beam(CR-beam) EDISON program. EB-beam is used to analyze a spring-mass system with a single degree of freedom. Sinusoidal force with various frequencies and constant magnitude are applied to tip of each beam. After the oscillatory tip response is observed in EB-beam, it decreases and finally converges to the so-called 'steady-state.' The decreasing rate of the tip deflection with respect to time is reduced when the forcing frequency is increased. Although the tip deflection is found to be independent of the excitation frequency, it turns out that time to reach the steady state response is dependent on the forcing frequency.

  • PDF

Overdenture의 지대치 Coping형태에 따른 광탄성 응력 분석 (TWO-DIMENSIONAL PHOTOELASTIC ANALYSIS ON VARIOUS TYPES OF COPING DESIGNS UNDER OVERDENTURE)

  • 양혜령;방몽숙
    • 대한치과보철학회지
    • /
    • 제29권2호
    • /
    • pp.103-115
    • /
    • 1991
  • This study was executed to analyze the stress distribution of tooth, supporting structure and overdenture by two-dimensional photoelastics when 6 types of coping were inserted. Types of coping were designed to be inclined plane, short dome, medium dome, shore square, medium square and o-p anchor attachment. Fortes were applied respectively as follows: 1) Vertical load of 10 kg on the incisal edge 2) $30^{\circ}$ diagonal load of 8 kg on the labial surface. The results were as follows: 1. In case of short dome and o-p anchor attachment, the stress is evenly distributed on teeth, supporting tissue structure under vertical and $30^{\circ}$ diagonal load, then short dome and o-p anchor attachment show better stress distribution and stabilization of overdenture than any other coping under labial diagonal load. 2. Inclined plane revealed greater tendency of displacement of overdenture than any other coping under labial diagonal load. 3. Long height of copings had greater concentration of stress than short height of copings. 4. In case of medium dome under labial diagonal load, there were high level of stress concentration on denture base contacted labioincisal angle of coping.

  • PDF