• Title/Summary/Keyword: in-plane forces

Search Result 322, Processing Time 0.03 seconds

ELECTRO-MICROSCOPE BASED 3D PLANT CELL IMAGE PROCESSING METHOD

  • Lee, Choong-Ho;Umeda Mikio;Takesi Sugimoto
    • Proceedings of the Korean Society for Agricultural Machinery Conference
    • /
    • 2000.11b
    • /
    • pp.227-235
    • /
    • 2000
  • Agricultural products are easily deformable its shape because of some external forces. However, these force behavior is difficult to measure quantitatively. Until now, many researches on the mechanical property was performed with various methods such as material testing, chemical analysis and non-destructive methods. In order to investigate force behavior on the cellular unit of agricultural products, electro-microscope based 3D image processing method will contribute to analysis of plant cells behavior. Before image measurement of plant cells, plant sample was cut off cross-sectioned area in a size of almost 300-400 ${\mu}$ m units using the micron thickness device, and some of preprocessing procedure was performed with fixing and dyeing. However, the wall structure of plant cell is closely neighbor each other, it is necessary to separate its boundary pixel. Therefore, image merging and shrinking algorithm was adopted to avoid disconnection. After then, boundary pixel was traced through thinning algorithm. Each image from the electro-microscope has a information of x,y position and its height along the z axis cross sectioned image plane. 3D image was constructed using the continuous image combination. Major feature was acquired from a fault image and measured area, thickness of cell wall, shape and unit cell volume. The shape of plant cell was consist of multiple facet shape. Through this measured information, it is possible to construct for structure shape of unit plant cell. This micro unit image processing techniques will contribute to the filed of agricultural mechanical property and will use to construct unit cell model of each agricultural products and information of boundary will use for finite element analysis on unit cell image.

  • PDF

Design of Pile Foundations Considering Negative Skin Friction (부마찰력을 고려한 말뚝기초 설계)

  • Kim Ju-Hyong;Kwon Oh-Sung;Kim Myoug-Mo
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.65-74
    • /
    • 2005
  • The negative skin friction on piles, which are installed in currently consolidating soft deposits, creates significant problems on the stability of pile foundations. This study investigated whether or not the pile foundation designs were appropriate in soft deposits with large amount of consolidation settlement. The final settlements of the grounds along the pile depth were estimated by the soil parameters obtained from the laboratory tests and by the field-measured settlement curves, if they were available. The displacement of the piles along the pile depth was estimated by both the load transfer method and the numerical method. Both methods gave similar locations of neutral planes and magnitudes of the maximum axial forces on the piles. The movements of the ground and the piles were compared to calculate the down drag acting on piles. For the piles whose bearing capacities were less than the design loads including the down drag, slip layer coatings and/or incrementing of the pile penetration depth into the bearing stratum were proposed to improve the pile capacities.

Design Study on a Variable Intake and a Variable Nozzle for Hypersonic Engines

  • Taguchi, Hideyuki;Futamura, Hisao;Shimodaira, Kazuo;Morimoto, Tetsuya;Kojima, Takayuki;Okai, Keiichi
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2004.03a
    • /
    • pp.713-721
    • /
    • 2004
  • Variable air intake and variable exhaust nozzle of hypersonic engines are designed and tested in this study. Dimensions for variable geometry air intake, ram combustor and variable geometry exhaust nozzle are defined based on the requirements of a pre-cooled turbojet engine. Hypersonic Ramjet Engine is designed as a scaled test bed for each component. Actuation forces of moving parts for variable intake and variable nozzle are reduced by balancing the other force in the opposite direction. A demonstrator engine which includes variable intake and variable nozzle is designed and the components are fabricated. Composite material with silicone carbide is applied for high temperature parts under oxidation environment such as leading edge of the variable intake and combustor liner. Internal cooling structure is adopted for both moving and static parts of the variable nozzle. Pressure recovery and mass capture ratio of the variable intake at Mach 5 is obtained by a hypersonic wind tunnel test. Flow characteristics of the variable nozzle are obtained by a low temperature flow test. Wall temperature and heat flux of the nozzle at Mach 3 is obtained by a firing test. As results, the intake and the nozzle are proved to be used at designed pressure and temperature environment.

  • PDF

Exact Tangent Stiffness Matrix and Buckling Analysis Program of Plane Frames with Semi-Rigid Connections (부분강절로 연결된 평면뼈대구조의 엄밀한 접선강도행렬 및 안정성 해석프로그램 개발)

  • Min, Byoung Cheol;Kyung, Yong Soo;Kim, Moon Young
    • Journal of Korean Society of Steel Construction
    • /
    • v.20 no.1
    • /
    • pp.81-92
    • /
    • 2008
  • Generally the connection of members is defined as hinge or rigid. But, real joints on structure have to be considered semi-rigid connections because this permits relative rotation for members on joints. The purpose of this study is to derive a generalized tangential stiffness matrix of frames with semi-rigid connections and to develop a buckling analysis program. For the exact stiffness matrix, an accurate displacement field is introduced using an equilibrium equation for beam-columns under the bending and axial forces. Also, stability functions that consider sway deformation and force-displacement relations with rotational spring on ends were defined. In order to illustrate the accuracy of this study and the characteristics of semi-rigid for system buckling load, samples of angle-, portal- and 3-story frames with semi-rigid connections are presented, where the proposed approach is found to be in excellent agreement with other research results. Meanwhile, the application of codes such as Eurocode 3 and LRFD led to significant inaccuracies.

Stability Analysis of Shear-Flexible and Semi-Rigid Plane Frames (전단변형효과를 고려한 부분강절 평면뼈대구조의 안정성 해석)

  • Min, Byoung Cheol;Min, Dong Ju;Jung, Myung Rag;Kim, Moon Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.1A
    • /
    • pp.9-18
    • /
    • 2011
  • Generally the connection of structural members is assumed as hinge, rigid and semi-rigid connections. The exact tangent stiffness matrix of a semi-rigid frame element is newly derived using the stability functions considering shear deformations. Also, linearized elastic- and geometric-stiffness matrices of shear deformable semi-rigid frame are newly proposed. For the exact stiffness matrix, an accurate displacement field is introduced by equilibrium equation for beam-column under the bending and the axial forces. Also, stability functions considering sway deformation and force-displacement relations with elastic rotational spring on ends are defined. In order to illustrate the accuracy of this study, various numerical examples are presented and compared with other researcher's results. Lastly, shear deformation and semi-rigid effects on buckling behaviors of structure are parametrically investigated.

Integrated analysis and design of composite beams with flexible shear connectors under sagging and hogging moments

  • Wang, A.J.;Chung, K.F.
    • Steel and Composite Structures
    • /
    • v.6 no.6
    • /
    • pp.459-477
    • /
    • 2006
  • A theoretical research project is undertaken to develop integrated analysis and design tools for long span composite beams in modern high-rise buildings, and it aims to develop non-linear finite element models for practical design of composite beams. As the first paper in the series, this paper presents the development study as well as the calibration exercise of the proposed finite element models for simply supported composite beams. Other practical issues such as continuous composite beams, the provision of web openings for passage of building services, the partial continuity offered by the connections to columns as well as the behaviour of both unprotected and protected composite beams under fires will be reported separately. In this paper, details of the finite elements and the material models for both steel and reinforced concrete are first described, and finite element studies of composite beams with full details of test data are then presented. It should be noted that in the proposed finite element models, both steel beams and concrete slabs are modelled with two dimensional plane stress elements whose widths are assigned to be equal to the widths of concrete flanges, and the flange widths and the web thicknesses of steel beams as appropriate. Moreover, each shear connector is modelled with one horizontal spring and one vertical spring to simulate its longitudinal shear and pull-out actions based on measured load-slippage curves of push-out tests of shear connectors. The numerical results are then carefully analyzed and compared with the corresponding test results in terms of load mid-span deflection curves as well as load end-slippage curves. Other deformation characteristics of the composite beams such as stress and strain distributions across the composite cross-sections as well as distributions of shear forces and slippages in shear connectors along the beam spans are also examined in details. It is shown that the numerical results of the composite beams compare well with the test data in terms of various load-deformation characteristics along the entire deformation ranges. Hence, the proposed analysis and design tools are considered to be simple and yet effective for composite beams with practical geometrical dimensions and arrangements. Structural engineers are strongly encouraged to employ the models in their practical work to exploit the full advantages offered by composite construction.

Probabilistic Three-Dimensional Slope Stability Analysis on Logarithmic Spiral Failure (대수누선파양에 대한 확률론적 3차원 사면안정해석)

  • 서인석;김영수
    • Geotechnical Engineering
    • /
    • v.10 no.2
    • /
    • pp.121-140
    • /
    • 1994
  • This paper presents the probabilistic model to evaluate the three-dimensional stability of layered deposits and c-0 soil slopes. Rotational slides are assumed with a cylindroid control part terminated with plane ends. And the potential failure surfaces in this study are assumed with the logarithmic spiral curve refracted at boundary of layers. This model takes into consideration the spatial variabilities of soil properties and the uncertainties stemming from insufficient number of samples and the discrepancies between laboratory measured and in -situ values of shear strength parameters. From the probabilistic approxi mate method (FOSM and SOSM method), the mean and variance of safety factor are calculated, respectively. And the programs based on above models is developed and a case study is analysed in detail to study the sensitivity of results to variations in different parameters by using the programs developed in this study. On the basis of thin study the following conclusions could be stated : (1) The sensitivity analysis shown that the probability of failure is more sensitive to the uncertainty of the angle of internal friction than that of the cohesion, (2) The total 3-D proability of failure and the critical width of failure are significantly affected by total width of slope. It is found that the total 3-D probability of failure and the critical width of failure increase with increasing the slope width when seismic forces do not exist and the total 3-D probability of failure increases with increasing the slope width and the critical width of failure decreases when seismic intensity is relatively large, (3) A decrease in the safety factor (due to effect such as a rise in the mean ground water level, lower shear strength parameters, lower values for the correction factors, etc.) would result in reduction in the critical width of failure.

  • PDF

A Study on Appropriate Military Strength of Unified Korea (Focused on relative balance strategy and conflict scenario) (통일 한국의 적정 군사력에 관한 연구 - 분쟁 시나리오와 상대적 균형전략을 중심으로 -)

  • Hong, Bong-Gi
    • Journal of National Security and Military Science
    • /
    • s.13
    • /
    • pp.687-738
    • /
    • 2016
  • To prepare for the complicated international relationship regarding Korean Peninsula after reunification, this thesis started off with the awareness that Unified Korea should build its international posture and national security at an early stage by determining its appropriate military strength for independent defense and military strategies that Unified Korea should aim. The main theme of this thesis is 'The research on appropriate military strength of the Unified Korean military'. To derive appropriate military strength of Unified Korea, this research focuses on conflict scenario and relative balance strategy based on potential threats posed by neighboring countries, and this is the part that differentiates this research from other researches. First of all, the main objective of the research is to decide appropriate military strength for Unified Korea to secure defense sufficiency. For this, this research will decide efficient military strategy that Unified Korea should aim. Than by presuming the most possible military conflict scenario, this research will judge the most appropriate military strength for Unified Korea to overcome the dispute. Second, after deciding appropriate military strength, this research will suggest how to operate presumed military strength in each armed force. The result of this thesis is as in the following. First, Unified Korea should aim 'relative balance strategy'. 'Relative balance strategy' is a military strategy which Unified Korea can independently secure defense sufficiency by maintaining relative balance when conflicts occur between neighboring countries. This strategy deters conflicts in advance by relative balance of power in certain time and place. Even if conflict occurs inevitably, this strategy secures initiative. Second, when analyzing neighboring countries interest and strategic environment after unification, the possibility of all-out war will be low in the Korean Peninsula because no other nation wants the Korean Peninsula to be subordinated to one single country. Therefore appropriate military strength of the Unified Korean military would be enough when Unified Korea can achieve relative balance in regional war or limited war. Third, Northeast Asia is a region where economic power and military strength is concentrated. Despite increasing mutual cooperation in the region, conflicts and competition to expand each countries influence is inherent. Japan is constantly enhancing their military strength as they aim for normal statehood. China is modernizing their military strength as they aspire to become global central nation. Russia is also enhancing their military strength in order to hold on to their past glory of Soviet Union as a world power. As a result, both in quality and quantity, the gap between military strength of Unified Korea and each neighboring countries is enlarged at an alarming rate. Especially in the field of air-sea power, arms race is occurring between each nation. Therefore Unified Korea should be equipped with appropriate military strength in order to achieve relative balance with each threats posed by neighboring countries. Fourth, the most possible conflicts between Unified Korea and neighboring countries could be summarized into four, which are Dokdo territorial dispute with Japan, Leodo jurisdictional dispute with China, territorial dispute concerning northern part of the Korea Peninsula with China and disputes regarding marine resources and sea routes with Russia. Based on those conflict scenarios, appropriate military strength for Unified Korea is as in the following. When conflict occurs with Japan regarding Dokdo, Japan is expected to put JMSDF Escort Flotilla 3, one out of four of its Japan Maritime Self-Defense Force Escort Fleet, which is based in Maizuru and JMSDF Maizuru District. To counterbalance this military strength, Unified Korea needs one task fleet, comprised with three task flotilla. In case of jurisdictional conflict with China concerning Leodo, China is expected to dispatch its North Sea fleet, one out of three of its naval fleet, which is in charge of the Yellow Sea. To response to this military action, Unified Korea needs one task fleet, comprised with three task flotilla. In case of territorial dispute concerning northern part of the Korean Peninsula with China, it is estimated that out of seven Military Region troops, China will dispatch two Military Region troops, including three Army Groups from Shenyang Military Region, where it faces boarder with the Korean Peninsula. To handle with this military strength, Unified Korea needs six corps size ground force strength, including three corps of ground forces, two operational reserve corps(maneuver corps), and one strategic reserve corps(maneuver corps). When conflict occurs with Russia regarding marine resources and sea routes, Russia is expected to send a warfare group of a size that includes two destroyers, which is part of the Pacific Fleet. In order to balance this strength, Unified Korea naval power requires one warfare group including two destroyers. Fifth, management direction for the Unified Korean military is as in the following. Regarding the ground force management, it would be most efficient to deploy troops in the border area with china for regional and counter-amphibious defense. For the defense except the border line with china, the most efficient form of force management would be maintaining strategic reserve corps. The naval force should achieve relative balance with neighboring countries when there is maritime dispute and build 'task fleet' which can independently handle long-range maritime mission. Of the three 'task fleet', one task fleet should be deployed at Jeju base to prepare for Dokdo territorial dispute and Leodo jurisdictional dispute. Also in case of regional conflict with china, one task fleet should be positioned at Yellow Sea and for regional conflict with Japan and Russia, one task fleet should be deployed at East Sea. Realistically, Unified Korea cannot possess an air force equal to neither Japan nor China in quantity. Therefore, although Unified Korea's air force might be inferior in quantity, they should possess the systematic level which Japan or China has. For this Unified Korea should build air base in island areas like Jeju Island or Ullenong Island to increase combat radius. Also to block off infiltration of enemy attack plane, air force needs to build and manage air bases near coastal areas. For landing operation forces, Marine Corps should be managed in the size of two divisions. For island defense force, which is in charge of Jeju Island, Ulleung Island, Dokdo Island and five northwestern boarder island defenses, it should be in the size of one brigade. Also for standing international peace keeping operation, it requires one brigade. Therefore Marine Corps should be organized into three divisions. The result of the research yields a few policy implications when building appropriate military strength for Unified Korea. First, Unified Korea requires lower number of ground troops compared to that of current ROK(Republic of Korea) force. Second, air-sea forces should be drastically reinforced. Third, appropriate military strength of the Unified Korean military should be based on current ROK military system. Forth, building appropriate military strength for Unified Korea should start from today, not after reunification. Because of this, South Korea should build a military power that can simultaneously prepare for current North Korea's provocations and future threats from neighboring countries after reunification. The core of this research is to decide appropriate military strength for Unified Korea to realize relative balance that will ensure defense sufficiency from neighboring countries threats. In other words, this research should precisely be aware of threats posed by neighboring countries and decide minimum level of military strength that could realize relative balance in conflict situation. Moreover this research will show the path for building appropriate military strength in each armed force.

  • PDF

STRESS DISTRIBUTION IN ESTHETIC ORTHODONTIC BRACKETS : AN ANALYSIS USING THE FINITE ELEMENT METHOD (유한요소 분석을 통한 심미적 교정 브라켓의 응력 및 구조분석에 관한 연구)

  • Lee, Won-You;An, Ju-Sam;Park, Young-Cheol;Park, Myeong-Kyun;Sohn, Hong-Bum;Jeong, Si-Dong
    • The korean journal of orthodontics
    • /
    • v.28 no.1 s.66
    • /
    • pp.43-49
    • /
    • 1998
  • The aim of this study were to measure and compare the stress level on three type brackets and each other material (stainless steel, ceramic) with tipping and torquing forces by using the finite element analysis and to design biomechanically favorable brackets. For this study, three kinds of brackets were selected(A:Transcend-RMO, B:Signature-Unitek, C:PAW: plain archwire appliance-applied for a patent in Yonsei Udiversity). The slot size of bracket was 0.022inch and the size of archwire was 0.0175x0.025inch and taper shaped archwire was used in PAW. Loading force in tipping was 4.27N and torquing force was 32.858N applied by archwire torsion with 19.7degree and 11.3 degree in C type bracket. The conclusions were that (1) The finite element method proved to be a useful tool in the stress analysis of orthodontic bracket subjected to various forces. (2) With tipping, the stresses were concentrated at the gingival wall of the wire slot where it meets the mesial bracket surface and the incisal wall of the wire slot where it meets the distal bracket surface and with torquing, the stresses were concentrated at the junction of the gingival or incisal wall and base of the slot. (3) The maximum stress value was higher in torquing force than tipping force and therefore it is desirable to design on the basis of torquing force. (4) It was considered that the change in material might be affect on the diminish of stress value in the place of stess concentration. (5) The maximum stress value was highest on PAW bracket when the tipping and torquing force was applied and therefore it would be desirable to use mechanically favorable material on PAW bracket.

  • PDF

Material and Geometric Nonlinear Analysis of Plane Structure Using Co-rotational Fiber-section Beam Elements (동시회전의 화이버 단면 보 요소를 이용한 평면 구조물의 재료 및 기하 비선형 해석)

  • Kim, Jeongsoo;Kim, Moon Kyum
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.3
    • /
    • pp.255-263
    • /
    • 2017
  • This paper presents a beam element capable of conducting material and geometric nonlinear analysis for applications requiring the ultimate behavioral analysis of structures with composite cross-sections. The element formulation is based on co-rotational kinematics to simulate geometrically nonlinear behaviors, and it uses the fiber section method to calculate the stiffness and internal forces of the element. The proposed element was implemented using an in-house numerical program in which an arc-length method was adopted to trace severe nonlinear responses(such as snap-through or snapback), as well as ductile behavior after the peak load. To verify the proposed method of element formulation and the accuracy of the program that was used to employ the element, several numerical studies were conducted and the results from these numerical models were compared with those of three-dimensional continuum models and previous studies, to demonstrate the accuracy and computational efficiency of the element. Additionally, by evaluating an example case of a frame structure with a composite member, the effects of differences between composite material properties such as the elastic modulus ratio and strength ratio were analyzed. It was found that increasing the elastic modulus of the external layer of a composite cross-section caused quasi-brittle behavior, while similar responses of the composite structure to those of homogeneous and linear materials were shown to increase the yield strength of the external layer.