• Title/Summary/Keyword: in-plane and out-of-plane

Search Result 1,847, Processing Time 0.031 seconds

Seismic analysis of a masonry cross vault through shaking table tests: the case study of the Dey Mosque in Algiers

  • Rossi, Michela;Calderini, Chiara;Roselli, Ivan;Mongelli, Marialuisa;De Canio, Gerardo;Lagomarsino, Sergio
    • Earthquakes and Structures
    • /
    • v.18 no.1
    • /
    • pp.57-72
    • /
    • 2020
  • This paper presents the results of a monodirectional shaking table test on a full-scale unreinforced masonry cross vault characterized by asymmetric boundary conditions. The specimen represents a vault of the mosque of Dey in Algiers (Algeria), reproducing in detail the mechanical characteristics of masonry, and the constructive details including the presence of some peculiar wooden logs placed within the vault's abutments. The vault was tested with and without the presence of two steel bars which connect two opposite sides of the vault. The dynamic behaviour of both the vault's configurations were studied by using an incremental dynamic analysis up to the collapse of the vault without the steel bars. The use of an innovative high-resolution 3D optical system allowed measure displacement data of the cross vault during the shake table tests. The experimental results were analysed in terms of evolution of damage mechanisms, and in-plane and out-of-plane deformations. Moreover, the dynamic properties of the structure were investigated by means of an experimental modal analysis.

Characteristics of Surface Appearance of Zn Electrodeposits with Polyaniline and Additives (폴리아닐린과 첨가제에 따른 아연전기도금층의 표면 외관 특성)

  • Lee, Sang-Baek;Park, Hyeong-Ho;Bae, In-Seong;Yun, Jae-Sik;Kim, Byeong-Il
    • Korean Journal of Materials Research
    • /
    • v.12 no.2
    • /
    • pp.146-152
    • /
    • 2002
  • Effect of polyaniline and additives on surface appearance of Zn electrodeposition was investigated by SEM and XRD analyzing. We carried out the experiment from sulfate Zinc bath containing sulfonated polyaniline, gelatin and thiourea by EG(Electrogalvanizing) simulator. Addition of polyaniline and gelatin in bath, crystal size and shape of hexagonal plane of Zn crystal reduced. Mixing of thiourea, however, brittle deposits were observed because of the difference between vertical growth and parallel growth. (1011) peak appeared with polyaniline and gelatin in XRD analysis. In case of mixing of polyaniline, gelatin and thiourea, (1011) peak appeared and intensity of Zn basal plane decreased. These results suggested that overpotential increased with addition of polyaniline and additives In bath.

Fabrication of Biaxially Textured Ni Tapes from Ni Powder Compact Rods (분말 성형체로부터 양축정렬 집합조직을 갖는 니켈 테이프의 제조)

  • 이동욱;지봉기;주진호;김찬중
    • Journal of Powder Materials
    • /
    • v.10 no.4
    • /
    • pp.241-248
    • /
    • 2003
  • Biaxially textured Ni tapes were fabricated by a cold working and recrystallization heat treatment processes from powder compact rods. The processing parameters associated with the cube texture formation in Ni tapes were systematically investigated by using X-ray diffraction and pole-figure analysis. The Ni powder used in this study was 5 $\mu$m in size and 99.99% in purity. To find the optimum sintering temperature, tensile tests were performed for Ni rods sintered at various temperatures. The Ni rods sintered at 100$0^{\circ}C$ showed poor elongation and low fracture strength, while the Wi rods sintered above 100$0^{\circ}C$ revealed good mechanical properties. The higher elongation and fracture strength of the Ni rods sintered at higher temperatures than 100$0^{\circ}C$ are attributed to the full densification of the sintered rods. The sintered Ni rods were cold-rolled with 5% reduction to the final thickness of 100 $\mu$m and then annealed for development of rube texture in rolled Ni tapes. The annealed Ni tapes depicted strong cube texture with FWHM(full-width at half-maximum) of in-plane and out-of-plane in the range of 8$^{\circ}$ to 10$^{\circ}$. The NiO deposited on the Ni tapes by MOCVD process showed good epitaxy with FWHM=10$^{\circ}$, which indicates that the Ni tapes can be used as a substrate for YBCO coated conductors.

Buckling and stability analysis of sandwich beams subjected to varying axial loads

  • Eltaher, Mohamed A.;Mohamed, Salwa A
    • Steel and Composite Structures
    • /
    • v.34 no.2
    • /
    • pp.241-260
    • /
    • 2020
  • This article presented a comprehensive model to study static buckling stability and associated mode-shapes of higher shear deformation theories of sandwich laminated composite beam under the compression of varying axial load function. Four higher order shear deformation beam theories are considered in formulation and analysis. So, the model can consider the influence of both thick and thin beams without needing to shear correction factor. The compression force can be described through axial direction by uniform constant, linear and parabolic distribution functions. The Hamilton's principle is exploited to derive equilibrium governing equations of unified sandwich laminated beams. The governing equilibrium differential equations are transformed to algebraic system of equations by using numerical differential quadrature method (DQM). The system of equations is solved as an eigenvalue problem to get critical buckling loads and their corresponding mode-shapes. The stability of DQM in determining of buckling loads of sandwich structure is performed. The validation studies are achieved and the obtained results are matched with those. Parametric studies are presented to figure out effects of in-plane load type, sandwich thickness, fiber orientation and boundary conditions on buckling loads and mode-shapes. The present model is important in designing process of aircraft, naval structural components, and naval structural when non-uniform in-plane compressive loading is dominated.

Multiaxial fatigue behaviors of open-rib to crossbeam joints in orthotropic bridge structures

  • Yang, Haibo;Qian, Hongliang;Wang, Ping;Dong, Pingsha;Berto, Fillipo
    • Steel and Composite Structures
    • /
    • v.42 no.6
    • /
    • pp.843-853
    • /
    • 2022
  • The fatigue behavior of welded open rib-to crossbeam joints (ORCJ) in orthotropic bridge structures is investigated using a traction structural stress method. The fatigue behaviors of welded open rib-to crossbeam joints have been a subject of study for decades for ensuring operational safety and future design improvement. A mesh-insensitive combination of traction structural stresses in ORCJ was obtained considering the effect of in-plane shear stress and validated by fatigue test results. The proposed method is advantageous for predicting fatigue cracks that initiate from the crossbeam cutout and propagate along the crossbeam. The investigations carried out with the proposed approach reveal that the normal structural stress decreases with the propagation of fatigue cracks, while the ratio of shear stress to normal stress increases. The effect of shear structural stress is significant for the analysis of fatigue behavior of ORCJ in multiaxial stress states.

Transverse Wind Velocity Recorded in Spiral-Shell Pattern

  • Hyosun Kim
    • Journal of The Korean Astronomical Society
    • /
    • v.56 no.2
    • /
    • pp.149-157
    • /
    • 2023
  • The propagation speed of a circumstellar pattern revealed in the plane of the sky is often assumed to represent the expansion speed of the wind matter ejected from a post-main-sequence star at the center. We point out that the often-adopted isotropic wind assumption and the binary hypothesis as the underlying origin for the circumstellar pattern in the shape of multilayered shells are, however, mutually incompatible. We revisit the hydrodynamic models for spiral-shell patterns induced by the orbital motion of a hypothesized binary, of which one star is losing mass at a high rate. The distributions of transverse wind velocities as a function of position angle in the plane of the sky are explored along viewing directions. The variation of the transverse wind velocity is as large as half the average wind velocity over the entire three dimensional domain in the simulated models investigated in this work. The directional dependence of the wind velocity is indicative of the overall morphology of the circumstellar material, implying that kinematic information is an important ingredient in modeling the snapshot monitoring (often in the optical and near-infrared) or the spectral imaging observations for molecular line emissions.

Elastic properties of CNT- and graphene-reinforced nanocomposites using RVE

  • Kumar, Dinesh;Srivastava, Ashish
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1085-1103
    • /
    • 2016
  • The present paper is aimed to evaluate and compare the effective elastic properties of CNT- and graphene-based nanocomposites using 3-D nanoscale representative volume element (RVE) based on continuum mechanics using finite element method (FEM). Different periodic displacement boundary conditions are applied to the FEM model of the RVE to evaluate various elastic constants. The effects of the matrix material, the volume fraction and the length of reinforcements on the elastic properties are also studied. Results predicted are validated with the analytical and/or semiempirical results and the available results in the literature. Although all elastic stiffness properties of CNT- and graphene-based nanocomposites are found to be improved compared to the matrix material, but out-of-plane and in-plane stiffness properties are better improved in CNT- and graphene-based nanocomposites, respectively. It is also concluded that long nanofillers (graphene as well as CNT) are more effective in increasing the normal elastic moduli of the resulting nanocomposites as compared to the short length, but the values of shear moduli, except $G_{23}$ of CNT nanocomposite, of nanocomposites are slightly improved in the case of short length nanofillers (i.e., CNT and graphene).

Preliminary observational results with MIRIS

  • Han, Wonyong;Pyo, Jeonghyun;Kim, Il-Joong;Lee, Dae-Hee;Jeong, Woong-Seob;Moon, Bongkon;Park, Youngsik;Park, Sung-Joon;Lee, Dukhang;Park, Won-Kee;Ko, Kyeongyeon;Kim, Min Gyu;Nam, Uk-Won;Lee, Hyung Mok;Matsumoto, Toshio
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.40 no.1
    • /
    • pp.55.1-55.1
    • /
    • 2015
  • The first Korean infrared space telescope MIRIS (Milti-purpose InfraRed Imaging System) was successfully launched in November 2013, as the main payload of Korean STSAT-3 (Science and Technology Satellite-3). After initial on-orbit operation for verification, the observations have been made with MIRIS for the fluctuation of Cosmic Infrared Background and the Galactic Plane survey. For the study of near-infrared background, MIRIS completed the survey of large areas (> $10^{\circ}{\times}10^{\circ}$ around the pole regions: the north ecliptic pole (NEP), the north and south Galactic poles (NGP, SGP). We are also continuously and frequently monitoring the NEP region for the instrumental calibration and the zodiacal light study. One the other hand, the Paschen-${\alpha}$ Galactic plane survey has been carried out using two narrow-band filters (at $1.88{\mu}m$ and $1.84+1.92{\mu}m$) of MIRIS. This survey is planning to cover the whole Galactic plane with the latitude of ${\pm}3^{\circ}$, and the longitude regions of $+280^{\circ}<l<360^{\circ}$ and $0^{\circ}<l<+210^{\circ}$ have been completed (~ 80%) by February 2015. The data are still under the stage of reduction and analysis, and we present some preliminary results.

  • PDF

A parametric study on buckling loads and tension field stress patterns of steel plate shear walls concerning buckling modes

  • Memarzadeh, P.;Azhari, M.;Saadatpour, M.M.
    • Steel and Composite Structures
    • /
    • v.10 no.1
    • /
    • pp.87-108
    • /
    • 2010
  • A Steel Plate Shear Wall (SPSW) is a lateral load resisting system consisting of an infill plate located within a frame. When buckling occurs in the infill plate of a SPSW, a diagonal tension field is formed through the plate. The study of the tension field behavior regarding the distribution and orientation patterns of principal stresses can be useful, for instance to modify the basic strip model to predict the behavior of SPSW more accurately. This paper investigates the influence of torsional and out-of-plane flexural rigidities of boundary members (i.e. beams and columns) on the buckling coefficient as well as on the distribution and orientation patterns of principal stresses associated with the buckling modes. The linear buckling equations in the sense of von-Karman have been solved in conjunction with various boundary conditions, by using the Ritz method. Also, in this research the effects of symmetric and anti-symmetric buckling modes and complete anchoring of the tension field due to lacking of in-plane bending of the beams as well as the aspect ratio of plate on the behavior of tension field and buckling coefficient have been studied.

Irradiation enduced In-plane magnetization in Fe/MgO/Fe/Co multilayers

  • Singh, Jitendra Pal;Lim, Weon Cheol;Song, Jonghan;Kim, Jaeyeoul;Asokan, K.;Chae, Keun Hwa
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2015.08a
    • /
    • pp.188.1-188.1
    • /
    • 2015
  • For present investigation Fe/MgO/Fe/Co multilayer stack is grown on Si substrate using e-beam evaporation in ultrahigh vacuum. This stack is irradiated perpendicularly by 120 MeV $Ag^{8+}$ at different fluences ranging from $1{\times}10^{11}$ to $1{\times}10^{13}ions/cm^2$ in high vacuum using 15UD Pelletron Accelerator at Inter University Accelerator Centre, New Delhi. Magnetic measurements carried out on pre and post irradiated stacks show significant changes in the shape of perpendicular hysteresis which is relevant with previous observation of re-orientation of magnetic moment along the direction of ion trajectory. However increase in plane squareness may be due to the modification of interface structure of stacks. X-ray reflectivity measurements show onset of interface roughness and interface mixing. X-ray diffraction measurements carried out using synchrotron radiation shows amorphous nature of MgO and Co layer in the stack. Peak corresponding body centered Fe [JCPDS-06-0696] is observed in X-ray diffraction pattern of pre and post irradiated stacks. Peak broadening shows granular nature of Fe layer. Estimated crystallite size is $22{\pm}1nm$ for pre-irradiated stack. Crystallite size first increases with irradiation then decreases. Structural quality of these stacks was further studied using transmission electron microscopic measurements. Thickness from these measurements are 54, 36, 23, 58 and 3 nm respectively for MgO, Fe, MgO, Fe+Co and Au layers in the stack. These measurements envisage poor crystallinity of different layers. Interfaces are not clear which indicate mixing at interface. With increase fluence mixing and diffusion was increased in the stack. X-ray absorption spectroscopic measurements carried out on these stacks show changes of Fe valence state after irradiation along with change of O(2p)-metal (3d) hybridized state. Valence state change predicts oxide formation at interface which causes enhanced in-plane magnetization.

  • PDF