Browse > Article
http://dx.doi.org/10.4150/KPMI.2003.10.4.241

Fabrication of Biaxially Textured Ni Tapes from Ni Powder Compact Rods  

이동욱 (한국원자력연구소 원자력 재료기술 개발부)
지봉기 (한국원자력연구소 원자력 재료기술 개발부)
주진호 (성균관대학교 금속재료공학부)
김찬중 (한국원자력연구소 원자력 재료기술 개발부)
Publication Information
Journal of Powder Materials / v.10, no.4, 2003 , pp. 241-248 More about this Journal
Abstract
Biaxially textured Ni tapes were fabricated by a cold working and recrystallization heat treatment processes from powder compact rods. The processing parameters associated with the cube texture formation in Ni tapes were systematically investigated by using X-ray diffraction and pole-figure analysis. The Ni powder used in this study was 5 $\mu$m in size and 99.99% in purity. To find the optimum sintering temperature, tensile tests were performed for Ni rods sintered at various temperatures. The Ni rods sintered at 100$0^{\circ}C$ showed poor elongation and low fracture strength, while the Wi rods sintered above 100$0^{\circ}C$ revealed good mechanical properties. The higher elongation and fracture strength of the Ni rods sintered at higher temperatures than 100$0^{\circ}C$ are attributed to the full densification of the sintered rods. The sintered Ni rods were cold-rolled with 5% reduction to the final thickness of 100 $\mu$m and then annealed for development of rube texture in rolled Ni tapes. The annealed Ni tapes depicted strong cube texture with FWHM(full-width at half-maximum) of in-plane and out-of-plane in the range of 8$^{\circ}$ to 10$^{\circ}$. The NiO deposited on the Ni tapes by MOCVD process showed good epitaxy with FWHM=10$^{\circ}$, which indicates that the Ni tapes can be used as a substrate for YBCO coated conductors.
Keywords
Ni tape; Texture; Cold-rolling; Recrystallization; FWHM;
Citations & Related Records
연도 인용수 순위
  • Reference
1 /
[ B. De Boer;J.Eickemeyer;N.Reger;L.Fernandez;G.R.;J.Richter;B.Holzapfel;L.Schultz;W.Prusseit;P.Berberich ] / Acta Mater.   DOI   ScienceOn
2 /
[ X.D.Wu;S.R.Foltyn;P.N.Arendt;W.R.Blumenthal;I.H.Campbell;J.D.Cotton;J.Y.Coutler;W.L.Helts;M.P.Maley;H.F.Safar;J.L.Smith ] / Appl. Phys. Lett.   DOI   ScienceOn
3 /
[ Y.Iijima;K.Onabe;N.Futaki;N.Sadakata;K.O.Kohno ] / J. Appl. Phys.   DOI   ScienceOn
4 /
[ D.P.Norton;C.Park;C.Prouteau;D.K.Christen;M.F.Chisholm;J.D.Budai;S.J.Pennycook;A.Goyal;E.Y.Sun;D.F.Lee;D.M.Kroeger;E.Specht;M.Paranthaman;N.D.Browning ] / Mater. Sci. and Eng. B   DOI   ScienceOn
5 /
[ S. Pi ol;J.Diaz;M.Segarra;F.Espiell ] / Supercon. Sci. and Technol.   DOI   ScienceOn
6 /
[ ASTM ] / Standard Test Methods for Tension Testing of Metallic Materials
7 /
[ E.D.Specht;A.Goyal;D.F.Lee;F.A.List;D.M.Kroeger;M.Paranthaman;R.K.Williams;D.K.Christen ] / Supercond. Sci. Technol.   DOI   ScienceOn
8 /
[ J.Eickemeyer;D.Selbmann;R.Opitz;B. De Boer;B.Holzapfel;L.Schultz;U.Miller ] / Supercon. Sci. and Technol.   DOI   ScienceOn
9 /
[ R.D.Doherty;D.A.Hughes;F.J.Humphreys;J.J.Jonas;D. Juul Jensen;M.E.Kassner;W.E.King;T.R.McNelley;H.J.McQueen;A.D.Rollett ] / Mater. Sci. and Eng.
10 /
[ Tomonori Watanabe;Kaname Matsumoto;Toshihiko Maeda;Toru Tanigawa;Izumi Hirabayashi ] / Physica C
11 /
[ A.Goyal;J.D.Budai;D.M.Kroeger;D.P.Norton;E.D.Specht;D.K.Christen ] / US patent No. 5,741,377
12 /
[ A.Goyal;D.P.Norton;J.D.Budai;M.Paranthaman;E.D.Specht;D.M.Kroeger;D.K.Christen;Q.He;B.Saffian;F.A.List;D.F.Lee;P.M.Martin;C.E.Klabunde;E.Hatfield;V.K.Silkka ] / Appl. Phys. Lett.   DOI   ScienceOn
13 /
[ T.A.Gladstone;J.C.Moore;B.M.Henry;S.Speller;C.J.Salter;A.J.Wilkinson;C.R.M.Grovenor ] / Supercon. Sci. and Technol.   DOI   ScienceOn
14 /
[ K.Hasegawa;N.Yoshida;K.Fujino;H.Mukai;K.Hayashi;K.Sata;T.Ohkuma;S.Honjyo;H.Ishii;T.Hara ] / Proceedings of the 16th International Cryogenic Engineering Conference and International Cryogenic Material Confernece
15 /
[ Dong Nyung Lee ] / Mech. Sci.   DOI   ScienceOn
16 /
[ H.J.Bunge ] / Directional Properties of Materials
17 /
[ C.S.Barett;T.B.Masalski ] / Structure of Metals(3rd ed.)
18 /
[ Y.Iijima;N.Tanabe;O.Kohno;Y.Ikeno ] / Appl. Phys. Lett.   DOI